
VA/PT REPORT
VULNERABILITY ASSESSMENT & PENETRATION TEST

PREPARED FOR:

Client Organization / Client Organization

Target Scope: http://testphp.vulnweb.com/

PREPARED BY:

Cyber Advisory LLC

ExploitFinder Security Team

DOCUMENT ID: ee71f143-f81d-4d97-a022-d2d07c93be0e

DATE: 2026-02-08 00:49:06

STRICTLY CONFIDENTIAL

This document contains confidential information regarding the security posture of the target system. Distribution is restricted to authorized personnel
only.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 1

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

TABLE OF CONTENTS

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 2

1. Disclaimer & Confidentiality 3

2. Document Control 3

2.B Document Version History 3

2.A Engagement Authorization & Scope 4

3. Executive Summary 6

4. Scope & Technical Metrics 7

4.N Network Surface Inventory (Continued) 8

4.G Risk Distribution Graph 12

5. Methodology, Test Types & Attack Coverage 13

5.C Methodology References 15

5.D Evidence Register 15

5.D Evidence Register (Continued) 16

6. Detailed Technical Findings 17

7. Remediation Tracking Plan 62

7. Remediation Tracking (Continued) 63

8. Residual Risk Statement 64

A. Glossary of Terms & Abbreviations 65

A. Glossary (Continued) 66

B. Risk Acceptance Declaration 67

B. Risk Acceptance (Continued) 68

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

1. DISCLAIMER & CONFIDENTIALITY

This report is the exclusive property of the Client and Cyber Advisory LLC. The content of this document is

strictly confidential and intended solely for the use of the individual or entity to whom it is addressed.

LIMITATION OF LIABILITY:

This assessment was performed using industry-standard methodologies (NIST, OWASP, OSSTMM) and the

advanced ExploitFinder engine. While every effort has been made to ensure accuracy, the security

landscape is continuously evolving. This report represents a snapshot of the security posture at the time of

testing. Cyber Advisory LLC cannot guarantee that all vulnerabilities have been identified, nor can it

guarantee immunity from future attacks.

Cyber Advisory LLC shall not be held liable for any damages, direct or indirect, arising from the use or misuse

of the information contained within this report.

2. DOCUMENT CONTROL

Role Name Status Date

Lead Auditor ExploitFinder Engine Completed 2026-02-08 00:49:06

QA Reviewer Cyber Advisory Team Approved 2026-02-08 00:49:06

Report ID ee71f143-f81d-4d97-a022-d2d07c93be0e Version 1.0

2.B DOCUMENT VERSION HISTORY

This section tracks all revisions for audit trail and quality assurance purposes.

Version Date Author Changes Reviewed By

1.0 2026-02-08 00:49:06 ExploitFinder Engine Initial release - Full VA/PT assessment Cyber Advisory Team

1.1 [Reserved for future revision]

2.0 [Reserved for future revision]

All revisions must be approved by the QA Reviewer before distribution. Superseded versions must be destroyed or clearly marked as

obsolete.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 3

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

2.A ENGAGEMENT AUTHORIZATION & SCOPE

This assessment was performed under written authorization and agreed scope. Key engagement details are recorded
below.

Field Value

Engagement ID Not Provided

Contract Reference Not Provided

Authorized By Not Provided

Authorization Date Not Provided

Testing Window Not Provided

Primary Contact Not Provided

In-Scope Assets

Out-of-Scope Assets

Rules of Engagement

Not Provided

Assumptions

Not Provided

Data Handling

Not Provided

Limitations

Not Provided

Attestation: This report reflects technical testing within the authorized scope. It does not constitute a certification unless explicitly

stated in the engagement letter and signed by authorized parties.

Client Authorized Representative: __________________________Date: ____________

Lead Auditor: _________________________________ Date: ____________

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 4

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

REGULATORY COMPLIANCE DASHBOARD
Selected Framework: NIST SP 800-53. Full multi-framework posture shown below. Maturity scores (0-5) reflect
automated technical assessment only.

Framework Status Gaps Maturity Coverage Pass Partial Controls

ISO 27001:2022 TECHNICAL GAP 15 1/5 Ini 21% 2 2 19

NIST SP 800-53 TECHNICAL GAP 10 1/5 Ini 29% 1 3 14

GDPR (EU) TECHNICAL GAP 4 1/5 Ini 33% 1 1 6

SOC 2 Type II TECHNICAL GAP 6 1/5 Ini 40% 2 2 10

HIPAA (USA) TECHNICAL GAP 5 1/5 Ini 38% 1 2 8

Essential 8 (AU) TECHNICAL GAP 5 1/5 Ini 38% 2 1 8

Cyber Essentials (UK) TECHNICAL GAP 3 1/5 Ini 40% 0 2 5

OWASP Top 10 TECHNICAL GAP 6 1/5 Ini 40% 3 1 10

Maturity Scale: 1=Initial 2=Developing 3=Defined 4=Managed 5=Optimized

Note: This dashboard is an automated technical mapping based on detected vulnerabilities. It is informational only and does not
constitute a certification or full compliance audit. Organizational, people, and physical controls are not assessed. Maturity scores
reflect technical posture only and may differ from a full management-level assessment.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 5

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

3. EXECUTIVE SUMMARY

Cyber Advisory LLC was commissioned to perform a Vulnerability Assessment and Penetration Test (VA/PT)

against the infrastructure of TESTPHP.VULNWEB.COM.

The objective of this engagement was to identify security weaknesses, misconfigurations, and vulnerabilities

that could be exploited by malicious actors to compromise the Confidentiality, Integrity, and Availability of the

organization's assets.

Methodology Scenario:

The assessment was conducted effectively in a Black-Box Scenario. In this mode, the security team has zero

prior knowledge of the target infrastructure, simulating a real-world external attack from the internet. This

approach provides the most realistic view of the risk exposure to external threats.

Overall Risk Rating: CRITICAL

Critical vulnerabilities were identified with severe business impact potential. Immediate containment,

emergency patching, and executive escalation are required.

Executive Risk Conclusion: CRITICAL exposure. Immediate containment and emergency remediation

are required before standard business operations continue.

Summary of Results
- Executive Risk Conclusion: CRITICAL exposure. Immediate containment and emergency remediation are required
before standard business operations continue.
- Report ID: ee71f143-f81d-4d97-a022-d2d07c93be0e
- Assessment date: 2026-02-08 00:49:06
- Assets analyzed: 1 IP(s), 32 subdomain(s)
- Total findings: 32 (Critical 1, High 21, Medium 3, Low 4, Info 3)

Top Finding Families

- Absence of Anti-CSRF Tokens
- Config
- Content Security Policy (CSP) Header Not Set
- Critical
- Cross Site Scripting (Reflected)
- Email Security
- GDPR Contact Missing
- GDPR Cookie Consent Missing

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 6

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

4. SCOPE & TECHNICAL METRICS

The following metrics summarize the depth of the assessment:

 Metric Count

 IP Addresses Analyzed 1

 Subdomains Enumerated 32

 Vulnerabilities Identified 32

Penetration Test Scope Coverage
Penetration testing activities were executed across the authorized external attack surface: 2 reachable web assets out of
33 discovered hostnames, 0 hosts with open services, 0 validated open port-service entries, and 0 resolved public IP
target(s). All in-scope subdomains, IP targets, and discovered services were fingerprinted and analyzed for exploitable
weaknesses.

Network Surface Summary

Metric Count

Discovered Hostnames 33

Reachable Assets (HTTP response observed) 2

Redirect Responses (3xx) 0

Access-Controlled / Blocked (401/403/429) 0

Dead / Unresolved 32

Network Surface Inventory (All Discovered Subdomains)

Host HTTP Status

a105.testphp.vulnweb.com dead

a196.testphp.vulnweb.com dead

aomenhefabocaiwang.testphp.vulnweb.com dead

baomahuiyulechengqipai.testphp.vulnweb.com dead

bet365dabukailiao.testphp.vulnweb.com dead

biboyulekaihu.testphp.vulnweb.com dead

dalianxinyuwangqipai.testphp.vulnweb.com dead

dubogongsi.testphp.vulnweb.com dead

ens1.testphp.vulnweb.com dead

hnd.testphp.vulnweb.com dead

host-158.testphp.vulnweb.com dead

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 7

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

4.N NETWORK SURFACE INVENTORY (CONTINUED)

Host HTTP Status

jinpaiyulechengaomenduchang.testphp.vulnweb.com dead

l33.testphp.vulnweb.com dead

lilaizhenrenyulecheng.testphp.vulnweb.com dead

liubowenxinshuizhuluntan.testphp.vulnweb.com dead

liupanshui.testphp.vulnweb.com dead

n155.testphp.vulnweb.com dead

nico.testphp.vulnweb.com dead

ouzhoubeizhibo.testphp.vulnweb.com dead

phpadmin.testphp.vulnweb.com dead

quaomenxianshangyulecheng.testphp.vulnweb.com dead

qx7.testphp.vulnweb.com dead

s112.testphp.vulnweb.com dead

shalongguojibaijialeyulecheng.testphp.vulnweb.com dead

sieb-web1.testphp.vulnweb.com dead

srv240.testphp.vulnweb.com dead

taianlanqiuwang.testphp.vulnweb.com dead

testphp.vulnweb.com 200

vpn0010.testphp.vulnweb.com dead

www.testphp.vulnweb.com dead

xunyinglanqiubifenzhibo.testphp.vulnweb.com dead

yulexinxiwangbocai.testphp.vulnweb.com dead

zhenrenyulekaihu.testphp.vulnweb.com dead

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 8

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

REGULATORY AUTHORITY & SCOPE

Regulatory Authority National Institute of Standards and Technology (NIST), U.S. Department of Commerce

Legal Basis / Standard NIST SP 800-53 Rev. 5 - Security and Privacy Controls for Information Systems and

Organizations; Federal Information Security Modernization Act (FISMA)

Certification / Audit Body FedRAMP Joint Authorization Board (JAB) / Agency Authorizing Official (AO)

Applicable Clauses FIPS 199 (Security Categorization), FIPS 200 (Minimum Security Requirements), SP 800-37 (Risk

Management Framework), SP 800-53A (Assessment Procedures)

Controls in Scope AC (Access Control), AU (Audit), CM (Configuration), IA (Identification/Auth), IR (Incident

Response), RA (Risk Assessment), SC (System/Comms), SI (System/Info Integrity)

Scope & Limitation Statement

This report provides technical evidence for NIST control family assessment. It supports the System Security Plan (SSP),
Plan of Action and Milestones (POA&M), and Authorization to Operate (ATO) processes under FISMA/FedRAMP.

IMPORTANT: This VA/PT technical assessment provides supporting evidence for the regulatory framework indicated above. It does
NOT replace a full management-level audit, certification, or formal assessment by an accredited body. Organizational, procedural,
physical, and people controls are outside the scope of automated technical testing and must be evaluated separately.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 9

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

NIST SP 800-53 Analysis
Ref: NIST - Security and Privacy Controls for Info Systems

Maps technical findings to NIST SP 800-53 Rev. 5 control families (FISMA/FedRAMP).
Automated technical mapping only. Organizational, people, and physical controls are not assessed. This is not a certification.

Control / Requirement Traceability & Evidence Reference Status

AC-2 Account Management
Create, enable, modify, disable, and remove

information system accounts.

Issues (16):
- Cross Site Scripting (Reflected)
- Path Traversal
- Absence of Anti-CSRF Tokens
- File Sensibile Esposto (.idea/workspace.xml)

TECHNICAL GAP

AC-6 Least Privilege
Employ the principle of least privilege, allowing only

authorized accesses necessary for organizational

missions.

Issues (15):
- Cross Site Scripting (Reflected)
- Path Traversal
- Absence of Anti-CSRF Tokens

TECHNICAL GAP

AC-12 Session Termination
Automatically terminate a user session after defined

conditions.

Issues (16):
- Cross Site Scripting (Reflected)
- Absence of Anti-CSRF Tokens
- GDPR Cookie Consent Missing
- Security Headers Analysis - Grade F

TECHNICAL GAP

AU-2 Event Logging
Determine that the information system is capable of

auditing the needed events.

Issues (13):
- Cross Site Scripting (Reflected) TECHNICAL GAP

CM-6 Configuration Settings
Configure the security settings of products to the

most restrictive mode consistent with operational

requirements.

Issues (2):
- Header Sicurezza Mancanti
- [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0

REVIEW

CM-3 Configuration Change Control
Document, approve, and track changes to the

information system.

No direct technical deviations identified.

NOT DETECTED

SI-2 Flaw Remediation
Identify, report, and correct information system flaws;

install security-relevant software and firmware

updates.

Issues (3):
- [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0
- [OpenDB Match] PHP 7.x EOL Critical Risks: Framework:
PHP/5.6.40-38+ubuntu20.04.1+deb.sury.org+1
- PHP 5.6.40 Obsoleto

TECHNICAL GAP

SI-10 Information Input Validation
Check the validity of information inputs.

Issues (21):
- Cross Site Scripting (Reflected)
- Absence of Anti-CSRF Tokens
- SQL Injection - MySQL
- Path Traversal
[...]

TECHNICAL GAP

SI-11 Error Handling
Generate error messages that provide information

necessary for corrective actions without revealing

exploitable details.

Issues (1):
- No HTTPS/SSL Error

TECHNICAL GAP

SC-8 Transmission Confidentiality
Protect the confidentiality of transmitted information.

Issues (1):
- No HTTPS/SSL Error TECHNICAL GAP

SC-7 Boundary Protection
Monitor and control communications at the external

managed interfaces and at key internal boundaries.

Issues (14):
- Cross Site Scripting (Reflected)
- Absence of Anti-CSRF Tokens

TECHNICAL GAP

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 10

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Control / Requirement Traceability & Evidence Reference Status

IA-5 Authenticator Management
Manage information system authenticators.

Issues (1):
- Absence of Anti-CSRF Tokens REVIEW

RA-5 Vulnerability Monitoring
Monitor and scan for vulnerabilities in the information

system and hosted applications.

Issues (19):
- [OpenDB Match] PHP 7.x EOL Critical Risks: Framework:
PHP/5.6.40-38+ubuntu20.04.1+deb.sury.org+1
- [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0
- Cross Site Scripting (Reflected)
- Absence of Anti-CSRF Tokens
[...]

TECHNICAL GAP

IR-4 Incident Handling
An incident handling capability for security incidents

that includes preparation, detection, analysis,

containment, eradication, and recovery.

Issues (3):
- Missing Anti-clickjacking Header
- Absence of Anti-CSRF Tokens
- Security Headers Analysis - Grade F

PARTIAL/GAP

Technical Maturity Assessment: NIST SP 800-53

Maturity Score 1 / 5 Maturity Level Initial Coverage 29%

Controls Passed 1 Partial / Review 3 Technical Gaps 10

FIPS 199 Impact Categorization

Security Objective Potential Impact Basis

Confidentiality HIGH Based on 1 Critical + 21 High findings

Integrity HIGH Based on 1 Critical + 21 High findings

Availability HIGH Based on 1 Critical + 21 High findings

Plan of Action & Milestones (POA&M) Template

The following POA&M format is aligned with NIST SP 800-53 CA-5 and OMB guidance. Populate with remediation details and submit to the
Authorizing Official (AO).

ID Weakness Control(s) POC Resources Completion Milestone Status

1 SQL Injection - MySQL [Map] [Assign] [Est.] [Date] [Date] Open

2 SQL Injection - MySQL [Map] [Assign] [Est.] [Date] [Date] Open

3 SQL Injection - MySQL [Map] [Assign] [Est.] [Date] [Date] Open

4 SQL Injection - MySQL [Map] [Assign] [Est.] [Date] [Date] Open

5 Cross Site Scripting (Reflec [Map] [Assign] [Est.] [Date] [Date] Open

6 Cross Site Scripting (Reflec [Map] [Assign] [Est.] [Date] [Date] Open

7 Cross Site Scripting (Reflec [Map] [Assign] [Est.] [Date] [Date] Open

8 Cross Site Scripting (Reflec [Map] [Assign] [Est.] [Date] [Date] Open

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 11

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

4.G RISK DISTRIBUTION GRAPH

Risk Distribution Graph

CRITICAL 1

HIGH 21

MEDIUM 3

LOW 4

INFO 3

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 12

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

5. METHODOLOGY, TEST TYPES & ATTACK COVERAGE

Assessment Timeline & Toolchain
Observed telemetry: 258 HTTP requests, 16 mapped points, 32 subdomains, and 32 findings.

1. Asset Discovery
Subdomains, directories, and JavaScript asset analysis.
- Subfinder [Executed]: Fast passive subdomain enumeration.
- Directory Fuzzing (FFUF) [Configured]: High-performance directory/file brute-forcing.
- Deep JS Analysis [Executed]: JavaScript inspection for exposed endpoints, secrets, and client-side attack surface.
- Recursive Subdomain Scan [Executed]: Discovered subdomains are included in deeper vulnerability analysis.

2. Service & Fingerprint Analysis
Service exposure mapping and vulnerable component intelligence.
- Service Enumeration [Configured]: Open service and version discovery for externally reachable hosts.
- Technology Fingerprinting [Executed]: Software/version inference with vulnerable component correlation.
- Exploit Feasibility Review [Executed]: Evidence-based validation of likely exploit paths and impact.

3. Crawling & Attack Surface Mapping
State-aware and legacy crawling for endpoint coverage.
- Surgical State-Graph Crawler [Executed]: Maps forms, flows, and interactive states for dynamic applications.
- Deep JS Scanner (SPA) [Executed]: Headless execution for DOM attack vectors and hidden endpoints.
- Classic Legacy Spider [Executed]: Traditional href crawling used as compatibility fallback.

4. DAST & Active Verification
Automated dynamic analysis for web-layer security controls.
- OWASP ZAP (Daemon) [Executed]: Advanced DAST integration (v2.17.0). Daemon settings, API key, and port
orchestration are managed by Scan Manager.
- Nuclei Engine [Available]: Template-driven detection of known exposures and misconfigurations.

5. Active Injection Modules
Targeted exploit simulation and payload validation.
- SQLMap [Executed]: SQL Injection detection and verification.
- XSStrike [Executed]: Context-aware XSS fuzzing and payload validation.
- Commix [Available]: Command Injection detection for server-side execution vectors.

6. Risk Scoring & Reporting
Consolidation of findings, risk rating, and remediation roadmap.
- Passive Compliance Analysis [Executed]: GDPR/NIST-oriented passive checks and header posture analysis.
- Executive Risk Conclusion [Completed]: Executive risk statement with technical evidence and priority actions.

Assessment Methodology
The evaluation process follows recognized VA/PT practices aligned to NIST SP 800-115, OSSTMM and OWASP
guidance. Activities include reconnaissance, fingerprinting, misconfiguration review, vulnerability validation and
remediation guidance.

- Black-Box: external perspective without privileged internals.
- Grey-Box: targeted checks with limited context when scope data is provided.
- White-Box: code/configuration review methodology available for explicitly authorized engagements.
- All intrusive checks are executed under controlled conditions and written authorization.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 13

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Attack Vectors Executed
- SQL Injection
- SQL Injection (Boolean)
- SQL Injection (Blind)
- SQL Injection (Out of Band)
- Cross-Site Scripting (Reflected/Stored)
- Cross-Site Scripting (Blind)
- Command Injection
- Command Injection (Blind)
- Local File Inclusion
- Remote File Inclusion
- Remote File Inclusion (Out of Band)
- Code Evaluation
- Code Evaluation (Out of Band)
- Server-Side Template Injection
- HTTP Header Injection
- Open Redirection
- Expression Language Injection
- XML External Entity
- XML External Entity (Out of Band)
- Server-Side Request Forgery (Pattern Based)
- Server-Side Request Forgery (DNS)
- File Upload Security Validation
- Reflected File Download
- Insecure Reflected Content
- Web App Fingerprinting
- HTTP Methods Misconfiguration
- Cross-Origin Resource Sharing (CORS) Misconfiguration
- WebDAV Exposure
- Windows Short Filename Enumeration
- RoR Code Execution Checks

Detected in this assessment
- Absence of Anti-CSRF Tokens
- Config
- Content Security Policy (CSP) Header Not Set
- Critical
- Cross Site Scripting (Reflected)
- Email Security
- GDPR Contact Missing
- GDPR Cookie Consent Missing
- Missing Anti-clickjacking Header
- Path Traversal
- SQL Injection - MySQL
- Security

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 14

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

5.C METHODOLOGY REFERENCES

References Methodologies and Techniques Used
NIST SP 800-115
https://csrc.nist.gov/pubs/sp/800/115/final

OSSTMM 3
https://www.isecom.org/OSSTMM.3.pdf

OWASP Web Security Testing Guide (WSTG)
https://owasp.org/www-project-web-security-testing-guide/

OWASP Testing Guide v4
https://owasp.org/www-pdf-archive/OWASP_Testing_Guide_v4.pdf

PTES
http://www.pentest-standard.org/index.php/Main_Page

OWASP Top 10
https://owasp.org/www-project-top-ten/

5.D EVIDENCE REGISTER

Evidence hashes are computed from finding metadata and captured evidence to support integrity and traceability.

ID Title Severity Location Evidence Hash

DA7DA3A14E8D SQL Injection - MySQL High http://testphp.vulnweb.com/userinfo.php da7da3a14e8d668504adb6afe9c6bde8

670A0E0DC8EC SQL Injection - MySQL High http://testphp.vulnweb.com/secured/newus670a0e0dc8ecfc7c2475087dde986cb1

F7D9D24FEEE1 SQL Injection - MySQL High http://testphp.vulnweb.com/search.php?tef7d9d24feee1b1ff1005583b63769e18

6DEFBDB25D52 SQL Injection - MySQL High http://testphp.vulnweb.com/search.php?te6defbdb25d52583d1bfa1ad10707e562

8EA68CC5D550 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/showimage.php8ea68cc5d550ccccbfcc99c0e4691804

9D76B8AC6E59 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/product.php?p9d76b8ac6e5984a4574a1bcdde51eede

B0328D24BC33 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/listproducts. b0328d24bc337665a38003ef48844b90

DB00E0DCF94A Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/listproducts. db00e0dcf94a5d1671b89c35cb53bfb1

D092DF8C647C Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/hpp/params.phd092df8c647c364aa70f80b9c8bd758b

801A433E5994 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/hpp/params.ph801a433e5994eb0a5732e9596b69f32e

06B303A2AAA5 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/artists.php?a 06b303a2aaa57e8113a2ab53a6de37dc

4DFC3E55ABE9 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/userinfo.php 4dfc3e55abe9553b874717e67514cd45

317DE48D856B Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/secured/newus317de48d856bd75f3d5d15d391bdfa0d

E60311E9C8D0 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/guestbook.phpe60311e9c8d023d6c1fc13b17dab0767

F0660C00F92D Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/search.php?tef0660c00f92dae504eec71d4592b6738

188615A7B607 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/search.php?te188615a7b60752bfe05f3ac488cd0c7b

479DB7EB4D95 Cross Site Scripting (Reflected) High http://testphp.vulnweb.com/hpp/?pp=%22%3479db7eb4d9593fec2a796f9b010b953

60839145EEC7 Path Traversal High http://testphp.vulnweb.com/cart.php 60839145eec7e06b667ac6c3d763e7ce

367613FBD6C8 Missing Anti-clickjacking Header Info http://testphp.vulnweb.com/disclaimer.ph 367613fbd6c8dd4f5287d07302fcc30e

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 15

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

5.D EVIDENCE REGISTER (CONTINUED)

ID Title Severity Location Evidence Hash

481422560A5A Content Security Policy (CSP) Header Not Set Info http://testphp.vulnweb.com/high 481422560a5a04eb97405865293c95c2

F65E59B6F7C3 Absence of Anti-CSRF Tokens Info http://testphp.vulnweb.com/ f65e59b6f7c31caf13b163e985165562

4A05DC85855C File Sensibile Esposto (.idea/workspace.xml) High http://testphp.vulnweb.com/ 4a05dc85855c45cf834ccaf6435ee56a

14843F7D3CA9 Security Headers Analysis - Grade F Medium http://testphp.vulnweb.com/ 14843f7d3ca9c90e14de6a90fa9c6f71

GDPR Cookie Consent Missing Medium http://testphp.vulnweb.com/

33C442D1404F [GDPR Art. 37-39] Contatto Privacy/DPO Assent Medium http://testphp.vulnweb.com/ 33c442d1404f38393b3202f13b0bb527

8DC46220E9AB [OpenDB Match] PHP 7.x EOL Critical Risks: Fr High http://testphp.vulnweb.com/ 8dc46220e9abc24d8ac127a7d4fb8a27

8938AD8A573A Header Sicurezza Mancanti Low http://testphp.vulnweb.com/ 8938ad8a573aa9f6a72b939e14b5a951

5633E8B5B051 PHP 5.6.40 Obsoleto Critical http://testphp.vulnweb.com/ 5633e8b5b0517dc3436e8a11a420ee9d

7408AA3404C2 [OpenDB Match] Nginx Misconfiguration: Server Low http://testphp.vulnweb.com/ 7408aa3404c2e0818b8d22ad284912aa

AD9FAE91BA30 No HTTPS/SSL Error High http://testphp.vulnweb.com/ ad9fae91ba307f30dd86276cd0804c17

FE57864D8A76 Record SPF Mancante Low http://testphp.vulnweb.com/ fe57864d8a76c5715fa8c55671a43747

E6E7F43EF5E3 Record DMARC Mancante Low http://testphp.vulnweb.com/ e6e7f43ef5e3370ddf76231a64983bbf

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 16

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

6. DETAILED TECHNICAL FINDINGS

 1. PHP 5.6.40 Obsoleto CRITICAL

Description: PHP legacy estremamente vulnerabile.

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: 5633E8B5B051

First Observed:2026-02-08 00:49:51

Method: GET

Impact: Critical System Compromise: Full RCE or Database Access.

Risk Score: 9.5

CVSS: Risk score inferred from severity: Critical (9.5)

Evidence Hash:5633e8b5b0517dc3436e8a11a420ee9d59d0b556a00df61ce911b794aaf07ec6

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 2. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: DA7DA3A14E8D

First Observed:2026-02-08 01:03:48

Tool: OWASP ZAP

Method: GET

Parameter: uname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:da7da3a14e8d668504adb6afe9c6bde8e36efa6ed7e7d7bb6f994c25a9fd8be9
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 17

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Location: http://testphp.vulnweb.com/userinfo.php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/userinfo.php

Proof of Concept / Technical Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent
functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
Grant the minimum database access that is necessary for the application.

 3. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 670A0E0DC8EC

First Observed:2026-02-08 01:03:41

Tool: OWASP ZAP

Method: GET

Parameter: uuname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:670a0e0dc8ecfc7c2475087dde986cb14bbe05640e8c724b3bbed6973bc1c318

Location: http://testphp.vulnweb.com/secured/newuser.php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/secured/newuser.php

Proof of Concept / Technical Evidence:

You have an error in your SQL syntax

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 18

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent
functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
Grant the minimum database access that is necessary for the application.

 4. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: F7D9D24FEEE1

First Observed:2026-02-08 01:03:34

Tool: OWASP ZAP

Method: GET

Parameter: searchFor

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:f7d9d24feee1b1ff1005583b63769e18f470cf30d1be032f3cb577095a32e895

Location: http://testphp.vulnweb.com/search.php?test=query

Occurrences: 2 total instances

- http://testphp.vulnweb.com/search.php?test=query

Proof of Concept / Technical Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 19

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
Grant the minimum database access that is necessary for the application.

 5. SQL Injection - MySQL HIGH

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 6DEFBDB25D52

First Observed:2026-02-08 01:03:32

Tool: OWASP ZAP

Method: GET

Parameter: test

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:6defbdb25d52583d1bfa1ad10707e56246834b0e5f0c7c6e1975c24c1fe92f86

Location: http://testphp.vulnweb.com/search.php?test=%27

Occurrences: 2 total instances

- http://testphp.vulnweb.com/search.php?test=%27

Proof of Concept / Technical Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by '?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec', 'exec immediate', or equivalent
functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa' or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 20

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Grant the minimum database access that is necessary for the application.

 6. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Low. Evidence gathered through controlled testing workflow.

Finding ID: 8EA68CC5D550

First Observed:2026-02-08 01:02:12

Tool: OWASP ZAP

Method: GET

Parameter: file

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 21

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Confidence: Low

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:8ea68cc5d550ccccbfcc99c0e46918048bcb420d4624c5ede0da7292b41f0e77

Location: http://testphp.vulnweb.com/showimage.php?file=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/showimage.php?file=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 22

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 7. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 23

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 9D76B8AC6E59

First Observed:2026-02-08 01:02:09

Tool: OWASP ZAP

Method: GET

Parameter: pic

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:9d76b8ac6e5984a4574a1bcdde51eedea202596734dbdcd941a410db565bb640

Location: http://testphp.vulnweb.com/product.php?pic=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/product.php?pic=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 24

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 8. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 25

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: B0328D24BC33

First Observed:2026-02-08 01:02:07

Tool: OWASP ZAP

Method: GET

Parameter: cat

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:b0328d24bc337665a38003ef48844b90c7c4ef8b3cae91844507361e40fd4d6c

Location: http://testphp.vulnweb.com/listproducts.php?cat=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRi

pt%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/listproducts.php?cat=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 26

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 27

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 9. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: DB00E0DCF94A

First Observed:2026-02-08 01:02:02

Tool: OWASP ZAP

Method: GET

Parameter: artist

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 28

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Evidence Hash:db00e0dcf94a5d1671b89c35cb53bfb1afaeb1ecf38f9e699520df430216f9bc

Location: http://testphp.vulnweb.com/listproducts.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2Fs

cRipt%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/listproducts.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 29

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 10. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 30

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: D092DF8C647C

First Observed:2026-02-08 01:01:59

Tool: OWASP ZAP

Method: GET

Parameter: pp

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:d092df8c647c364aa70f80b9c8bd758b2a24cac740d7ff4a9ac436e79ea35d26

Location: http://testphp.vulnweb.com/hpp/params.php?p=valid&pp=%3CscrIpt%3Ealert%281%29%3B%3C%2

FscRipt%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/hpp/params.php?p=valid&pp=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 31

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 11. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 32

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 801A433E5994

First Observed:2026-02-08 01:01:56

Tool: OWASP ZAP

Method: GET

Parameter: p

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:801a433e5994eb0a5732e9596b69f32e5aace2e83e1b54288d7c1f03f4442418

Location: http://testphp.vulnweb.com/hpp/params.php?p=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3

E&pp=12

Occurrences: 2 total instances

- http://testphp.vulnweb.com/hpp/params.php?p=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E&pp=12

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 33

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 34

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 12. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 06B303A2AAA5

First Observed:2026-02-08 01:01:48

Tool: OWASP ZAP

Method: GET

Parameter: artist

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 35

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Evidence Hash:06b303a2aaa57e8113a2ab53a6de37dc29e498f7c7b23ee8ff83cc98fb1adb68

Location: http://testphp.vulnweb.com/artists.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt

%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/artists.php?artist=%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 36

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 13. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 37

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 4DFC3E55ABE9

First Observed:2026-02-08 01:01:29

Tool: OWASP ZAP

Method: GET

Parameter: uname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:4dfc3e55abe9553b874717e67514cd45130ab8ddda01295d94de25b32c56faa3

Location: http://testphp.vulnweb.com/userinfo.php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/userinfo.php

Proof of Concept / Technical Evidence:

'"<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 38

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 14. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 39

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 317DE48D856B

First Observed:2026-02-08 01:01:24

Tool: OWASP ZAP

Method: GET

Parameter: uuname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:317de48d856bd75f3d5d15d391bdfa0dfbd2a239bb076ff56e6cf9a9e0cdea13

Location: http://testphp.vulnweb.com/secured/newuser.php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/secured/newuser.php

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 40

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 15. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 41

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: E60311E9C8D0

First Observed:2026-02-08 01:01:21

Tool: OWASP ZAP

Method: GET

Parameter: name

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:e60311e9c8d023d6c1fc13b17dab07677fab92122021c2844657bb9b016fe446

Location: http://testphp.vulnweb.com/guestbook.php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/guestbook.php

Proof of Concept / Technical Evidence:

<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 42

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 43

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 16. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: F0660C00F92D

First Observed:2026-02-08 01:01:18

Tool: OWASP ZAP

Method: GET

Parameter: searchFor

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 44

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Evidence Hash:f0660c00f92dae504eec71d4592b673836de5792e6f16315d690314ce3effed3

Location: http://testphp.vulnweb.com/search.php?test=query

Occurrences: 2 total instances

- http://testphp.vulnweb.com/search.php?test=query

Proof of Concept / Technical Evidence:

</h2><scrIpt>alert(1);</scRipt><h2>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 45

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 17. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 46

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Finding ID: 188615A7B607

First Observed:2026-02-08 01:01:13

Tool: OWASP ZAP

Method: GET

Parameter: test

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:188615a7b60752bfe05f3ac488cd0c7ba022bcc03dd315bda26a7faacaea79bc

Location: http://testphp.vulnweb.com/search.php?test=%27%22%3CscrIpt%3Ealert%281%29%3B%3C%2FscR

ipt%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/search.php?test=%27%22%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

'"<scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 47

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 18. Cross Site Scripting (Reflected) HIGH

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a

user's browser instance. A browser instance can be a standard web browser client, or a browser object

embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.

The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,

Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security

context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown

fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially

compromise the trust relationship between a user and the web site. Applications utilizing browser object

instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.

Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 48

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted

automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious

link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by

the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)

is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a

period of time. Examples of an attacker's favorite targets often include message board posts, web mail

messages, and web chat software. The unsuspecting user is not required to interact with any additional

site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 479DB7EB4D95

First Observed:2026-02-08 01:01:02

Tool: OWASP ZAP

Method: GET

Parameter: pp

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:479db7eb4d9593fec2a796f9b010b953612c0251ae4fc7e7a10d8cc9dc3a0f35

Location: http://testphp.vulnweb.com/hpp/?pp=%22%3E%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Occurrences: 2 total instances

- http://testphp.vulnweb.com/hpp/?pp=%22%3E%3CscrIpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

"><scrIpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.
Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 49

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

 19. Path Traversal HIGH

Description: The Path Traversal attack technique allows an attacker access to files, directories, and commands that

potentially reside outside the web document root directory. An attacker may manipulate a URL in such a

way that the web site will execute or reveal the contents of arbitrary files anywhere on the web server.

Any device that exposes an HTTP-based interface is potentially vulnerable to Path Traversal.

Most web sites restrict user access to a specific portion of the file-system, typically called the "web

document root" or "CGI root" directory. These directories contain the files intended for user access and

the executable necessary to drive web application functionality. To access files or execute commands
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 50

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

anywhere on the file-system, Path Traversal attacks will utilize the ability of special-characters

sequences.

The most basic Path Traversal attack uses the "../" special-character sequence to alter the resource

location requested in the URL. Although most popular web servers will prevent this technique from

escaping the web document root, alternate encodings of the "../" sequence may help bypass the security

filters. These method variations include valid and invalid Unicode-encoding ("..%u2216" or "..%c0%af")

of the forward slash character, backslash characters ("..\") on Windows-based servers, URL encoded

characters "%2e%2e%2f"), and double URL encoding ("..%255c") of the backslash character.

Even if the web server properly restricts Path Traversal attempts in the URL path, a web application

itself may still be vulnerable due to improper handling of user-supplied input. This is a common problem

of web applications that use template mechanisms or load static text from files. In variations of the

attack, the original URL parameter value is substituted with the file name of one of the web application's

dynamic scripts. Consequently, the results can reveal source code because the file is interpreted as text

instead of an executable script. These techniques often employ additional special characters such as

the dot (".") to reveal the listing of the current working directory, or "%00" NULL characters in order to

bypass rudimentary file extension checks.

Validation: Low. Evidence gathered through controlled testing workflow.

Finding ID: 60839145EEC7

First Observed:2026-02-08 00:51:01

Tool: OWASP ZAP

Method: GET

Parameter: price

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Low

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:60839145eec7e06b667ac6c3d763e7ce7a21f66fd1dbcc08dc72f8f198d363eb

Location: http://testphp.vulnweb.com/cart.php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/cart.php

Proof of Concept / Technical Evidence:

Detected during controlled assessment and verification workflow.

Recommendation:

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 51

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

For filenames, use stringent allow lists that limit the character set to be used. If feasible, only allow a single "." character
in the filename to avoid weaknesses, and exclude directory separators such as "/". Use an allow list of allowable file
extensions.

Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that can be dangerous. A
sanitizing mechanism can remove characters such as '.' and ';' which may be required for some exploits. An attacker can
try to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects a '.' inside a
filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid filename,
"sensitiveFile". If the input data are now assumed to be safe, then the file may be compromised.

Inputs should be decoded and canonicalized to the application's current internal representation before being validated.
Make sure that your application does not decode the same input twice. Such errors could be used to bypass allow list
schemes by introducing dangerous inputs after they have been checked.

Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical version of the
pathname, which effectively removes ".." sequences and symbolic links.

Run your code using the lowest privileges that are required to accomplish the necessary tasks. If possible, create
isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not
immediately give the attacker access to the rest of the software or its environment. For example, database applications
rarely need to run as the database administrator, especially in day-to-day operations.

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of
fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the
operating system. This may effectively restrict which files can be accessed in a particular directory or which commands
can be executed by your software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some
protection. For example, java.io.FilePermission in the Java SecurityManager allows you to specify restrictions on file
operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of your application may
still be subject to compromise.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 52

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 20. File Sensibile Esposto (.idea/workspace.xml) HIGH

Description: Accessibile a: http://testphp.vulnweb.com/.idea/workspace.xml

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: 4A05DC85855C

First Observed:2026-02-08 00:49:57

Method: GET

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:4a05dc85855c45cf834ccaf6435ee56ab7c0ec1e816edec16b8be19853933753

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 21. [OpenDB Match] PHP 7.x EOL Critical Risks: Framework: PHP/5.6.40-38+ubuntu20.04.1+deb.sury.org+1HIGH

Description: Status: Rilevamento confermato (Offline DB)

Descrizione: PHP 7.4 è End-of-Life. Esposto a RCE (CVE-2022-31629) e Memory Corruption.

CVE: CVSS 9.8

Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: 8DC46220E9AB

First Observed:2026-02-08 00:49:54

Method: GET

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:8dc46220e9abc24d8ac127a7d4fb8a274bc9e9713f8ea7889350cb52f2cfba89

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 53

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 22. No HTTPS/SSL Error HIGH

Description: Connessione non sicura

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: AD9FAE91BA30

First Observed:2026-02-08 00:49:48

Method: GET

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash:ad9fae91ba307f30dd86276cd0804c17ac52c692837fe470aad265d44d377934

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 23. Security Headers Analysis - Grade F MEDIUM

Description: ? HTTP Strict Transport Security (HSTS): Helps protect websites against protocol downgrade attacks

and cookie hijacking

? Content Security Policy (CSP): Helps prevent Cross-Site Scripting (XSS) and data injection attacks

? X-Frame-Options: Protects against clickjacking attacks by preventing your site from being embedded

in iframes

? X-Content-Type-Options: Prevents browsers from MIME-sniffing a response from the declared

content-type

? Referrer Policy: Controls how much referrer information is included with requests

? Permissions Policy: Controls which browser features and APIs can be used in the browser

Validation: Missing 6 security headers. Grade: F (Fail). Evidence gathered through controlled testing workflow.

Finding ID: 14843F7D3CA9

First Observed:2026-02-08 00:49:57

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 54

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Tool: Header Analyzer

Method: GET

Impact: Moderate Risk: User Session Manipulation or Partial Disclosure.

Confidence: Certain

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Evidence Hash:14843f7d3ca9c90e14de6a90fa9c6f71a54ef1b3368266ab765422c28e1443b6

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Strict-Transport-Security: max-age=31536000; includeSubDomains
Content-Security-Policy: default-src 'self'
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
Referrer-Policy: no-referrer-when-downgrade
Permissions-Policy: camera=(), microphone=(), geolocation=()

 24. GDPR Cookie Consent Missing MEDIUM

Description: No valid cookie consent banner was detected on the assessed target. Checks performed: Cookie Policy

link, script vendors (30+ markers), consent DOM elements, and accept/reject controls.

Validation: Nessun Cookie Banner, CMP (Consent Management Platform) o meccanismo di consenso rilevato.

Evidence gathered through controlled testing workflow.

Tool: GDPR Compliance Scanner

Method: GET

Impact: Moderate Risk: User Session Manipulation or Partial Disclosure.

Confidence: Firm

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit Checks performed: Cookie Policy link, script vendors (30+ markers), consent DOM

elements, and accept/reject controls.

Recommendation:
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 55

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

1. Implement a certified CMP (e.g., Cookiebot, OneTrust, iubenda).
2. Block all tracking scripts before consent is granted.
3. Provide granular consent controls by cookie category.
4. Store auditable proof of consent, including timestamp and preference state.

 25. [GDPR Art. 37-39] Contatto Privacy/DPO Assente MEDIUM

Description: Non è stato rilevato un contatto esplicito per la privacy (DPO, privacy@, ecc.)

Validation: Nessun indirizzo email privacy@, dpo@ o link a modulo contatto privacy trovato. Evidence gathered

through controlled testing workflow.

Finding ID: 33C442D1404F

First Observed:2026-02-08 00:49:57

Tool: GDPR Compliance Scanner

Method: GET

Impact: Moderate Risk: User Session Manipulation or Partial Disclosure.

Confidence: Firm

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Evidence Hash:33c442d1404f38393b3202f13b0bb52708435be62f1fffa3d6f88d2d13f2eb4a

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

1. Create a dedicated privacy contact email (e.g., privacy@domain.com, dpo@domain.com)
2. Publish the contact details in the Privacy Notice
3. If a DPO is mandatory, appoint and register the DPO with the competent supervisory authority

 26. Header Sicurezza Mancanti LOW

Description: Strict-Transport-Security

Content-Security-Policy

X-Frame-Options

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: 8938AD8A573A

First Observed:2026-02-08 00:49:54

Method: GET
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 56

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Evidence Hash:8938ad8a573aa9f6a72b939e14b5a951480074b434740d0c3e30bfa677a1e78c

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 27. [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0 LOW

Description: Status: Rilevamento confermato (Offline DB)

Descrizione: Verificare settings per buffer overflow e header exposure.

CVE: N/A

Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: 7408AA3404C2

First Observed:2026-02-08 00:49:51

Method: GET

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Evidence Hash:7408aa3404c2e0818b8d22ad284912aaf8846007779e692f67854eacd28ed71e

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 57

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 28. Record SPF Mancante LOW

Description: Rischio SPAM/Spoofing

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: FE57864D8A76

First Observed:2026-02-08 00:49:48

Method: GET

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Evidence Hash:fe57864d8a76c5715fa8c55671a43747c98f3269bed9d678fee903fe20b19082

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.

 29. Record DMARC Mancante LOW

Description: Rischio BEC limitato

Validation: Observed. Evidence gathered through controlled testing workflow.

Finding ID: E6E7F43EF5E3

First Observed:2026-02-08 00:49:48

Method: GET

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Evidence Hash:e6e7f43ef5e3370ddf76231a64983bbf671e59c8c4059f073edf3f90f9f972cb

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

Detected during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 58

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

 30. Missing Anti-clickjacking Header INFO

Description: The response does not protect against 'ClickJacking' attacks. It should include either

Content-Security-Policy with 'frame-ancestors' directive or X-Frame-Options.

Validation: Medium. Evidence gathered through controlled testing workflow.

Finding ID: 367613FBD6C8

First Observed:2026-02-08 00:50:10

Tool: OWASP ZAP

Method: GET

Parameter: header-x-frame

Impact: Low Risk: Information Gathering or Best Practice Violation.

Confidence: Medium

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Evidence Hash:367613fbd6c8dd4f5287d07302fcc30ecb4281ad4bd76738c21e5ab3d5da2854

Location: http://testphp.vulnweb.com/disclaimer.php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/disclaimer.php

Proof of Concept / Technical Evidence:

Detected during controlled assessment and verification workflow.

Recommendation:

Modern Web browsers support the Content-Security-Policy and X-Frame-Options HTTP headers. Ensure one of them is
set on all web pages returned by your site/app.
If you expect the page to be framed only by pages on your server (e.g. it's part of a FRAMESET) then you'll want to use
SAMEORIGIN, otherwise if you never expect the page to be framed, you should use DENY. Alternatively consider
implementing Content Security Policy's "frame-ancestors" directive.

 31. Content Security Policy (CSP) Header Not Set INFO

Description: Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain

types of attacks, including Cross Site Scripting (XSS) and data injection attacks. These attacks are used

for everything from data theft to site defacement or distribution of malware. CSP provides a set of

standard HTTP headers that allow website owners to declare approved sources of content that browsers

should be allowed to load on that page ? covered types are JavaScript, CSS, HTML frames, fonts,

images and embeddable objects such as Java applets, ActiveX, audio and video files.

Validation: High. Evidence gathered through controlled testing workflow.

Finding ID: 481422560A5A

First Observed:2026-02-08 00:50:10

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 59

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Tool: OWASP ZAP

Method: GET

Parameter: header-csp

Impact: Low Risk: Information Gathering or Best Practice Violation.

Confidence: High

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Evidence Hash:481422560a5a04eb97405865293c95c2de99368050ec2850811a7eede42a231e

Location: http://testphp.vulnweb.com/high

Occurrences: 2 total instances

- http://testphp.vulnweb.com/high

Proof of Concept / Technical Evidence:

Detected during controlled assessment and verification workflow.

Recommendation:

Ensure that your web server, application server, load balancer, etc. is configured to set the Content-Security-Policy
header.

 32. Absence of Anti-CSRF Tokens INFO

Description: No Anti-CSRF tokens were found in a HTML submission form.

A cross-site request forgery is an attack that involves forcing a victim to send an HTTP request to a

target destination without their knowledge or intent in order to perform an action as the victim. The

underlying cause is application functionality using predictable URL/form actions in a repeatable way.

The nature of the attack is that CSRF exploits the trust that a web site has for a user. By contrast,

cross-site scripting (XSS) exploits the trust that a user has for a web site. Like XSS, CSRF attacks are

not necessarily cross-site, but they can be. Cross-site request forgery is also known as CSRF, XSRF,

one-click attack, session riding, confused deputy, and sea surf.

CSRF attacks are effective in a number of situations, including:

* The victim has an active session on the target site.

* The victim is authenticated via HTTP auth on the target site.

* The victim is on the same local network as the target site.

CSRF has primarily been used to perform an action against a target site using the victim's privileges, but

recent techniques have been discovered to disclose information by gaining access to the response. The

risk of information disclosure is dramatically increased when the target site is vulnerable to XSS,

because XSS can be used as a platform for CSRF, allowing the attack to operate within the bounds of

the same-origin policy.

Validation: Low. Evidence gathered through controlled testing workflow.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 60

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Finding ID: F65E59B6F7C3

First Observed:2026-02-08 00:50:10

Tool: OWASP ZAP

Method: GET

Parameter: csrf-token

Impact: Low Risk: Information Gathering or Best Practice Violation.

Confidence: Low

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Evidence Hash:f65e59b6f7c31caf13b163e9851655624f0b6acc8cbdcf09dee1944574b1d115

Location: http://testphp.vulnweb.com/

Occurrences: 2 total instances

- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

<form action="search.php?test=query" method="post">

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, use anti-CSRF packages such as the OWASP CSRFGuard.

Phase: Implementation
Ensure that your application is free of cross-site scripting issues, because most CSRF defenses can be bypassed using
attacker-controlled script.

Phase: Architecture and Design
Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be
sure that the nonce is not predictable (CWE-330).
Note that this can be bypassed using XSS.

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation
request to ensure that the user intended to perform that operation.
Note that this can be bypassed using XSS.

Use the ESAPI Session Management control.
This control includes a component for CSRF.

Do not use the GET method for any request that triggers a state change.

Phase: Implementation
Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate
functionality, because users or proxies may have disabled sending the Referer for privacy reasons.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 61

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

7. REMEDIATION TRACKING PLAN

This section provides a structured remediation plan with assigned ownership, priority, and target SLA based on finding
severity. Deadlines follow industry-standard timeframes aligned with PCI DSS and NIST guidelines.

Remediation SLA Reference

Severity Priority Target SLA Guidance

Critical P1 24-72 hours Immediate containment. Emergency patch. Executive escalation required.

High P2 7-14 days Priority remediation in next change window. Verify within 14 days.

Medium P3 30-60 days Scheduled remediation. Include in next sprint/maintenance cycle.

Low P4 90 days Address during regular maintenance. Monitor for escalation.

Info P5 Best effort Informational. Consider hardening. No immediate action required.

Finding Remediation Register

Finding Sev. Prio SLA Owner Status Deadline Verified

1 PHP 5.6.40 Obsoleto Critical P1 24-72 hours [Assign] Open [Set] []

2 SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []

3 SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []

4 SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []

5 SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []

6 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

7 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

8 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

9 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

10 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

11 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

12 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

13 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

14 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

15 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

16 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

17 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

18 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []

19 Path Traversal High P2 7-14 days [Assign] Open [Set] []

20 File Sensibile Esposto (.idea/wo High P2 7-14 days [Assign] Open [Set] []

21 [OpenDB Match] PHP 7.x EOL Criti High P2 7-14 days [Assign] Open [Set] []

22 No HTTPS/SSL Error High P2 7-14 days [Assign] Open [Set] []

23 Security Headers Analysis - Grad Medium P3 30-60 days [Assign] Open [Set] []

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 62

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

7. REMEDIATION TRACKING (CONTINUED)

Finding Sev. Prio SLA Owner Status Deadline Verified

24 GDPR Cookie Consent Missing Medium P3 30-60 days [Assign] Open [Set] []

25 [GDPR Art. 37-39] Contatto Priva Medium P3 30-60 days [Assign] Open [Set] []

26 Header Sicurezza Mancanti Low P4 90 days [Assign] Open [Set] []

27 [OpenDB Match] Nginx Misconfigur Low P4 90 days [Assign] Open [Set] []

28 Record SPF Mancante Low P4 90 days [Assign] Open [Set] []

29 Record DMARC Mancante Low P4 90 days [Assign] Open [Set] []

30 Missing Anti-clickjacking Header Info P5 Best effort [Assign] Open [Set] []

31 Content Security Policy (CSP) He Info P5 Best effort [Assign] Open [Set] []

32 Absence of Anti-CSRF Tokens Info P5 Best effort [Assign] Open [Set] []

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 63

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

8. RESIDUAL RISK STATEMENT

This section documents the anticipated residual risk after implementation of all recommended remediation actions.

Residual risk is the exposure that remains after controls and mitigations are applied.

Current Risk Posture

Total Findings 32

Critical + High Findings 22

Current Overall Risk CRITICAL

Expected Residual Risk (Post-Remediation)

Expected risk after full remediation MEDIUM

Remaining findings (Low/Info only) 7

Residual Risk Factors (Inherent Limitations)

 - Zero-day vulnerabilities not detectable by current testing methods.
 - Business logic flaws requiring authenticated/contextual testing beyond scope.
 - Supply chain risks in third-party components not fully enumerable.
 - Social engineering and insider threat vectors (out of technical VA/PT scope).
 - Configuration drift between assessment date and remediation completion.
 - Evolving threat landscape may introduce new attack vectors post-assessment.
 - Cloud/SaaS provider shared-responsibility controls not directly testable.

Recommendation: Schedule a follow-up reassessment within 90 days of completing Critical/High remediations to validate

effectiveness. Annual full-scope VA/PT is recommended as part of continuous security posture management per ISO 27001 Clause

10.2 and NIST SP 800-53 CA-2.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 64

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

A. GLOSSARY OF TERMS & ABBREVIATIONS

Term Definition

ACSC Australian Cyber Security Centre

ASVS Application Security Verification Standard (OWASP)

Black-Box Testing without prior knowledge of internal systems

CORS Cross-Origin Resource Sharing

CSRF Cross-Site Request Forgery

CVE Common Vulnerabilities and Exposures - publicly disclosed security flaws

CVSS Common Vulnerability Scoring System (v2.0/v3.1) - standardized severity rating

CWE Common Weakness Enumeration - software security weakness categorization

DAST Dynamic Application Security Testing

DPIA Data Protection Impact Assessment (GDPR Art. 35)

DPO Data Protection Officer

ePHI Electronic Protected Health Information (HIPAA)

FedRAMP Federal Risk and Authorization Management Program

FIPS Federal Information Processing Standards

GDPR General Data Protection Regulation (EU 2016/679)

Grey-Box Testing with limited internal knowledge

HIPAA Health Insurance Portability and Accountability Act (U.S.)

ISMS Information Security Management System

ISO 27001 International standard for Information Security Management Systems

LFI/RFI Local / Remote File Inclusion

MFA Multi-Factor Authentication

NCSC National Cyber Security Centre (United Kingdom)

NIST National Institute of Standards and Technology (U.S. Dept. of Commerce)

OSSTMM Open Source Security Testing Methodology Manual

OWASP Open Web Application Security Project

POA&M Plan of Action and Milestones (NIST/FISMA)

PTES Penetration Testing Execution Standard

RCE Remote Code Execution

SAST Static Application Security Testing

SHA-256 Secure Hash Algorithm 256-bit (evidence integrity)

SLA Service Level Agreement

SoA Statement of Applicability (ISO 27001 Annex A)

SOC 2 Service Organization Control 2 - AICPA Trust Services Criteria

SPA Single Page Application

SQLi SQL Injection

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 65

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

A. GLOSSARY (CONTINUED)

Term Definition

SSP System Security Plan

SSRF Server-Side Request Forgery

TLP Traffic Light Protocol - information sharing classification

TLP:RED Restricted disclosure - authorized recipients only

TSC Trust Services Criteria (SOC 2)

VA/PT Vulnerability Assessment and Penetration Test

White-Box Testing with full source code / configuration access

WSTG Web Security Testing Guide (OWASP)

XSS Cross-Site Scripting

XXE XML External Entity Injection

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 66

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

B. RISK ACCEPTANCE DECLARATION

Following the review of this VA/PT report, the Client organization acknowledges the identified risks and their potential

business impact. This section formally documents risk treatment decisions.

Risk Summary

Overall Risk Rating CRITICAL

Total Findings 32

Critical / High Findings 1 / 21

Medium / Low / Info 3 / 4 / 3

Risk Treatment Decision Register

Finding Title Sev. Treatment (Mitigate/Accept/Transfer/Avoid) Business Justification

1 PHP 5.6.40 Obsoleto Critical []Mit []Acc []Trf []Avd

2 SQL Injection - MySQL High []Mit []Acc []Trf []Avd

3 SQL Injection - MySQL High []Mit []Acc []Trf []Avd

4 SQL Injection - MySQL High []Mit []Acc []Trf []Avd

5 SQL Injection - MySQL High []Mit []Acc []Trf []Avd

6 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

7 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

8 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

9 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

10 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

11 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

12 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

13 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

14 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

15 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

16 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

17 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

18 Cross Site Scripting (Reflected) High []Mit []Acc []Trf []Avd

19 Path Traversal High []Mit []Acc []Trf []Avd

20 File Sensibile Esposto (.idea/workspac High []Mit []Acc []Trf []Avd

21 [OpenDB Match] PHP 7.x EOL Critical Ri High []Mit []Acc []Trf []Avd

22 No HTTPS/SSL Error High []Mit []Acc []Trf []Avd

23 Security Headers Analysis - Grade F Medium []Mit []Acc []Trf []Avd

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 67

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

B. RISK ACCEPTANCE (CONTINUED)

Finding Title Sev. Treatment Business Justification

24 GDPR Cookie Consent Missing Medium []Mit []Acc []Trf []Avd

25 [GDPR Art. 37-39] Contatto Privacy/DPO Medium []Mit []Acc []Trf []Avd

Treatment: MITIGATE (implement fix), ACCEPT (retain risk), TRANSFER (insure/outsource), AVOID (discontinue service).
Risk acceptance for Critical/High findings requires executive-level approval and documented business justification per ISO 27001 Clause 6.1.3 and
NIST SP 800-37.

Risk Owner Approval

Name: ________________________________ Title: ________________________________

Signature: ____________________________ Date: _______________

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 68

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

ATTESTATION & SIGN-OFF

This Vulnerability Assessment and Penetration Test report has been prepared in accordance with industry-standard

methodologies (NIST SP 800-115, OSSTMM 3, OWASP WSTG) and represents the findings observed during the

authorized testing window.

The undersigned parties attest that:

1. Testing was conducted within the authorized scope and rules of engagement.

2. All findings have been verified and documented with supporting evidence.

3. Evidence integrity is maintained via SHA-256 hashing of each finding.

4. Compliance mappings are automated technical observations and do not constitute certification.

5. This document is classified TLP:RED; distribution is restricted to named recipients.

6. The assessment represents a point-in-time snapshot and does not guarantee ongoing security.

Lead Auditor / Assessor

Name: ExploitFinder Engine Date: _______________

Signature: ____________________________ Title: ____________________________

QA Reviewer

Name: Cyber Advisory Team Date: _______________

Signature: ____________________________ Title: ____________________________

Client Authorized Representative

Name: ________________________________ Date: _______________

Signature: ____________________________ Title: ____________________________

Client Technical Contact

Name: ________________________________ Date: _______________

Signature: ____________________________ Title: ____________________________

Document ID: ee71f143-f81d-4d97-a022-d2d07c93be0e | Assessment Date: 2026-02-08 00:49:06 | Risk Classification: CRITICAL | Classification:
TLP:RED

This attestation confirms review and acceptance of the assessment methodology, findings, and recommendations. Signing does not imply agreement
with all findings but acknowledges receipt and review of the complete document.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 69

