VA/PT REPORT

VULNERABILITY ASSESSMENT & PENETRATION TEST

PREPARED FOR:
Client Organization / Client Organization

Target Scope: http://testphp.vulnweb.com/

PREPARED BY:
Cyber Advisory LLC

ExploitFinder Security Team

DOCUMENT ID: ee71f 143-f 81d- 4d97- a022- d2d07c93bele
DATE: 2026-02-08 00:49:06

STRICTLY CONFIDENTIAL

This document contains confidential information regarding the security posture of the target system. Distribution is restricted to authorized personnel
only.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 1

Strictly Confidential - Cyber Advisory LLC

TABLE OF CONTENTS

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Exploit Finder

1. Disclaimer & Confidentiality
2. Document Control
2.B Document Version History
2.A Engagement Authorization & Scope
3. Executive Summary
4. Scope & Technical Metrics
4.N Network Surface Inventory (Continued)
4.G Risk Distribution Graph
5. Methodology, Test Types & Attack Coverage
5.C Methodology References
5.D Evidence Register
5.D Evidence Register (Continued)
Detailed Technical Findings
Remediation Tracking Plan
Remediation Tracking (Continued)
Residual Risk Statement
. Glossary of Terms & Abbreviations
. Glossary (Continued)

. Risk Acceptance Declaration

m W > > ®© N N O

. Risk Acceptance (Continued)

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com

o N O A W W W

12
13
15
15
16
17
62
63
64
65
66
67
68

Page 2

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

1. DISCLAIMER & CONFIDENTIALITY

This report is the exclusive property of the Client and Cyber Advisory LLC. The content of this document is
strictly confidential and intended solely for the use of the individual or entity to whom it is addressed.

LIMITATION OF LIABILITY:

This assessment was performed using industry-standard methodologies (NIST, OWASP, OSSTMM) and the
advanced ExploitFinder engine. While every effort has been made to ensure accuracy, the security
landscape is continuously evolving. This report represents a snapshot of the security posture at the time of
testing. Cyber Advisory LLC cannot guarantee that all vulnerabilities have been identified, nor can it
guarantee immunity from future attacks.

Cyber Advisory LLC shall not be held liable for any damages, direct or indirect, arising from the use or misuse
of the information contained within this report.

2. DOCUMENT CONTROL

Role Name Status Date
Lead Auditor ExploitFinder Engine Completed 2026-02-08 00:49:06
QA Reviewer Cyber Advisory Team Approved 2026-02-08 00:49:06
Report ID ee71f143-f81d-4d97-a022-d2d07c93be0e Version 1.0

2.B DOCUMENT VERSION HISTORY

This section tracks all revisions for audit trail and quality assurance purposes.

Version Date Author Changes Reviewed By

1.0 2026-02-08 00:49:06 ExploitFinder Engine Initial release - Full VA/PT assessment Cyber Advisory Team

All revisions must be approved by the QA Reviewer before distribution. Superseded versions must be destroyed or clearly marked as
obsolete.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 3

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

2.A ENGAGEMENT AUTHORIZATION & SCOPE

This assessment was performed under written authorization and agreed scope. Key engagement details are recorded
below.

Field Value

Engagement ID Not Provided
Contract Reference Not Provided
Authorized By Not Provided
Authorization Date Not Provided
Testing Window Not Provided
Primary Contact Not Provided

In-Scope Assets

Out-of-Scope Assets

Rules of Engagement
Not Provided

Assumptions
Not Provided

Data Handling
Not Provided

Limitations
Not Provided

Attestation: This report reflects technical testing within the authorized scope. It does not constitute a certification unless explicitly
stated in the engagement letter and signed by authorized parties.

Client Authorized Representative: Date:
Lead Auditor: Date:

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 4

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

REGULATORY COMPLIANCE DASHBOARD

Selected Framework: NIST SP 800-53. Full multi-framework posture shown below. Maturity scores (0-5) reflect
automated technical assessment only.

1ISO 27001:2022 TECHNICAL GAP 1/5 Ini 21%

NIST SP 800-53 TECHNICAL GAP 10 1/5 Ini 29% 1 3 14
GDPR (EV) TECHNICAL GAP 4 1/5 Ini 33% 1 1 6
SOC 2 Type Il TECHNICAL GAP 6 1/5 Ini 40% 2 2 10
HIPAA (USA) TECHNICAL GAP 5 1/5 Ini 38% 1 2 8
Essential 8 (AU) TECHNICAL GAP 5 1/5 Ini 38% 2 1 8
Cyber Essentials (UK) TECHNICAL GAP 3 1/5 Ini 40% 0 2 5
OWASP Top 10 TECHNICAL GAP 6 1/5 Ini 40% 3 1 10

Maturity Scale: 1=Initial 2=Developing 3=Defined 4=Managed 5=Optimized

Note: This dashboard is an automated technical mapping based on detected vulnerabilities. It is informational only and does not
constitute a certification or full compliance audit. Organizational, people, and physical controls are not assessed. Maturity scores
reflect technical posture only and may differ from a full management-level assessment.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 5

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

3. EXECUTIVE SUMMARY

Cyber Advisory LLC was commissioned to perform a Vulnerability Assessment and Penetration Test (VA/PT)
against the infrastructure of TESTPHP.VULNWEB.COM.

The objective of this engagement was to identify security weaknesses, misconfigurations, and vulnerabilities
that could be exploited by malicious actors to compromise the Confidentiality, Integrity, and Availability of the
organization's assets.

Methodology Scenario:

The assessment was conducted effectively in a Black-Box Scenario. In this mode, the security team has zero
prior knowledge of the target infrastructure, simulating a real-world external attack from the internet. This
approach provides the most realistic view of the risk exposure to external threats.

Overall Risk Rating: CRITICAL

Critical vulnerabilities were identified with severe business impact potential. Immediate containment,
emergency patching, and executive escalation are required.

Executive Risk Conclusion: CRITICAL exposure. Immediate containment and emergency remediation
are required before standard business operations continue.

Summary of Results

- Executive Risk Conclusion: CRITICAL exposure. Immediate containment and emergency remediation are required
before standard business operations continue.

- Report ID: ee71f143-f81d-4d97-a022-d2d07c93bele

- Assessment date: 2026-02-08 00:49:06

- Assets analyzed: 1 IP(s), 32 subdomain(s)

- Total findings: 32 (Critical 1, High 21, Medium 3, Low 4, Info 3)

Top Finding Families

- Absence of Anti-CSRF Tokens

- Config

- Content Security Policy (CSP) Header Not Set
- Critical

- Cross Site Scripting (Reflected)

- Email Security

- GDPR Contact Missing

- GDPR Cookie Consent Missing

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 6

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC

4. SCOPE & TECHNICAL METRICS

The following metrics summarize the depth of the assessment:

Metric Count
IP Addresses Analyzed 1
Subdomains Enumerated 32
Vulnerabilities Identified 32

Penetration Test Scope Coverage

Exploit Finder

Penetration testing activities were executed across the authorized external attack surface: 2 reachable web assets out of
33 discovered hostnames, 0 hosts with open services, 0 validated open port-service entries, and 0 resolved public IP
target(s). All in-scope subdomains, IP targets, and discovered services were fingerprinted and analyzed for exploitable

weaknesses.

Network Surface Summary

Metric Count
Discovered Hosthnames 33
Reachable Assets (HTTP response observed) 2
Redirect Responses (3xx) 0
Access-Controlled / Blocked (401/403/429) 0
Dead / Unresolved 32

Network Surface Inventory (All Discovered Subdomains)
Host

al05.testphp.vulnweb.com
al96.testphp.vulnweb.com
aomenhefabocaiwang.testphp.vulnweb.com
baomahuiyulechenggipai.testphp.vulnweb.com
bet365dabukailiao.testphp.vulnweb.com
biboyulekaihu.testphp.vulnweb.com
dalianxinyuwanggipai.testphp.vulnweb.com
dubogongsi.testphp.vulnweb.com
ensl.testphp.vulnweb.com
hnd.testphp.vulnweb.com

host-158.testphp.vulnweb.com

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com

dead
dead
dead
dead
dead
dead
dead
dead
dead
dead
dead

HTTP Status

Page 7

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

4N NETWORK SURFACE INVENTORY (CONTINUED)

Host HTTP Status
jinpaiyulechengaomenduchang.testphp.vulnweb.com dead
133.testphp.vulnweb.com dead
lilaizhenrenyulecheng.testphp.vulnweb.com dead
liubowenxinshuizhuluntan.testphp.vulnweb.com dead
liupanshui.testphp.vulnweb.com dead
n155.testphp.vulnweb.com dead
nico.testphp.vulnweb.com dead
ouzhoubeizhibo.testphp.vulnweb.com dead
phpadmin.testphp.vulnweb.com dead
quaomenxianshangyulecheng.testphp.vulnweb.com dead
gx7.testphp.vulnweb.com dead
s112.testphp.vulnweb.com dead
shalongguojibaijialeyulecheng.testphp.vulnweb.com dead
sieb-web1.testphp.vulnweb.com dead
srv240.testphp.vulnweb.com dead
taianlangiuwang.testphp.vulnweb.com dead
testphp.vulnweb.com 200
vpn0010.testphp.vulnweb.com dead
www.testphp.vulnweb.com dead
xunyinglangiubifenzhibo.testphp.vulnweb.com dead
yulexinxiwangbocai.testphp.vulnweb.com dead
zhenrenyulekaihu.testphp.vulnweb.com dead

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 8

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

REGULATORY AUTHORITY & SCOPE

Regulatory Authority

Legal Basis / Standard

Certification / Audit Body

Applicable Clauses

Controls in Scope

Scope & Limitation Statement

National Institute of Standards and Technology (NIST), U.S. Department of Commerce

NIST SP 800-53 Rev. 5 - Security and Privacy Controls for Information Systems and
Organizations; Federal Information Security Modernization Act (FISMA)

FedRAMP Joint Authorization Board (JAB) / Agency Authorizing Official (AO)

FIPS 199 (Security Categorization), FIPS 200 (Minimum Security Requirements), SP 800-37 (Risk
Management Framework), SP 800-53A (Assessment Procedures)

AC (Access Control), AU (Audit), CM (Configuration), IA (Identification/Auth), IR (Incident

Response), RA (Risk Assessment), SC (System/Comms), S| (System/Info Integrity)

This report provides technical evidence for NIST control family assessment. It supports the System Security Plan (SSP),
Plan of Action and Milestones (POA&M), and Authorization to Operate (ATO) processes under FISMA/FedRAMP.

IMPORTANT: This VA/PT technical assessment provides supporting evidence for the regulatory framework indicated above. It does
NOT replace a full management-level audit, certification, or formal assessment by an accredited body. Organizational, procedural,
physical, and people controls are outside the scope of automated technical testing and must be evaluated separately.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 9

Strictly Confidential - Cyber Advisory LLC

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

NIST SP 800-53 Analysis

Ref: NIST - Security and Privacy Controls for Info Systems

Maps technical findings to NIST SP 800-53 Rev. 5 control families (FISMA/FedRAMP).
Automated technical mapping only. Organizational, people, and physical controls are not assessed. This is not a certification.

Control / Requirement Traceability & Evidence Reference

AC-2 Account Management
Create, enable, modify, disable, and remove
information system accounts.

AC-6 Least Privilege

Employ the principle of least privilege, allowing only
authorized accesses necessary for organizational
missions.

AC-12 Session Termination

Automatically terminate a user session after defined
conditions.

AU-2 Event Logging
Determine that the information system is capable of
auditing the needed events.

CM-6 Configuration Settings

Configure the security settings of products to the
most restrictive mode consistent with operational
requirements.

CM-3 Configuration Change Control
Document, approve, and track changes to the
information system.

SI-2 Flaw Remediation

Identify, report, and correct information system flaws;

install security-relevant software and firmware
updates.

SI-10 Information Input Validation
Check the validity of information inputs.

SI-11 Error Handling

Generate error messages that provide information
necessary for corrective actions without revealing
exploitable details.

SC-8 Transmission Confidentiality

Protect the confidentiality of transmitted information.

SC-7 Boundary Protection
Monitor and control communications at the external
managed interfaces and at key internal boundaries.

Cyber Advisory LLC | www.exploitfinder.com

Issues (16):

- Cross Site Scripting (Reflected)

- Path Traversal

- Absence of Anti-CSRF Tokens

- File Sensibile Esposto (.idea/workspace.xml)
Issues (15):

- Cross Site Scripting (Reflected)

- Path Traversal

- Absence of Anti-CSRF Tokens
Issues (16):

- Cross Site Scripting (Reflected)

- Absence of Anti-CSRF Tokens

- GDPR Cookie Consent Missing

- Security Headers Analysis - Grade F
Issues (13):

- Cross Site Scripting (Reflected)

Issues (2):
- Header Sicurezza Mancanti
- [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0

No direct technical deviations identified.

Issues (3):

- [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0
- [OpenDB Match] PHP 7.x EOL Critical Risks: Framework:
PHP/5.6.40-38+ubuntu20.04.1+deb.sury.org+1

- PHP 5.6.40 Obsoleto

Issues (21):

- Cross Site Scripting (Reflected)

- Absence of Anti-CSRF Tokens

- SQL Injection - MySQL

- Path Traversal

[-]

Issues (1):

- No HTTPS/SSL Error

Issues (1):
- No HTTPS/SSL Error

Issues (14):
- Cross Site Scripting (Reflected)
- Absence of Anti-CSRF Tokens

TLP:RED - STRICTLY CONFIDENTIAL

Exploit Finder

TECHNICAL GAP

TECHNICAL GAP

TECHNICAL GAP

TECHNICAL GAP

REVIEW

NOT DETECTED

TECHNICAL GAP

TECHNICAL GAP

TECHNICAL GAP

TECHNICAL GAP

TECHNICAL GAP

Page 10

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder
Control / Requirement Traceability & Evidence Reference
IA-5 Authenticator Management Issues (1):
Manage information system authenticators. - Absence of Anti-CSRF Tokens REVIEW
RA-5 Vulnerability Monitoring Issues (19):
Monitor and scan for vulnerabilities in the information | - [OpenDB Match] PHP 7.x EOL Critical Risks: Framework:
system and hosted applications. PHP/5.6.40-38+ubuntu20.04.1+deb.sury.org+1
- [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0 TECHNICAL GAP

- Cross Site Scripting (Reflected)
- Absence of Anti-CSRF Tokens

(]

IR-4 Incident Handling Issues (3):
An incident handling capability for security incidents | - Missing Anti-clickjacking Header
) .) . . PARTIAL/GAP
that includes preparation, detection, analysis, - Absence of Anti-CSRF Tokens
containment, eradication, and recovery. - Security Headers Analysis - Grade F
Technical Maturity Assessment: NIST SP 800-53
Maturity Score 1/5 Maturity Level Initial Coverage 29%
Controls Passed 1 Partial / Review 3 Technical Gaps 10

FIPS 199 Impact Categorization

Security Objective

Confidentiality

Integrity

Availability

Potential Impact Basis
HIGH Based on 1 Critical + 21 High findings
HIGH Based on 1 Critical + 21 High findings
HIGH Based on 1 Critical + 21 High findings

Plan of Action & Milestones (POA&M) Template

The following POA&M format is aligned with NIST SP 800-53 CA-5 and OMB guidance. Populate with remediation details and submit to the
Authorizing Official (AO).

ID

1

Weakness

SQL Injection - MySQL
SQL Injection - MySQL
SQL Injection - MySQL
SQL Injection - MySQL
Cross Site Scripting (Reflec
Cross Site Scripting (Reflec
Cross Site Scripting (Reflec

Cross Site Scripting (Reflec

Control(s) POC Resources Completion
[Map] [Assign] [Est] [Date]
[Map] [Assign] [Est] [Date]
[Map] [Assign] [Est] [Date]
[Map] [Assign] [Est.] [Date]
[Map] [Assign] [Est.] [Date]
[Map] [Assign] [Est.] [Date]
[Map] [Assign] [Est.] [Date]
[Map] [Assign] [Est] [Date]

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com

Milestone
[Date]
[Date]
[Date]
[Date]
[Date]
[Date]
[Date]

[Date]

Status
Open
Open
Open
Open
Open
Open
Open

Open

Page 11

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

4.G RISK DISTRIBUTION GRAPH

Risk Distribution Graph

CRITICAL l 1
MEDIUM 3
wo [;

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 12

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

5. METHODOLOGY, TEST TYPES & ATTACK COVERAGE

Assessment Timeline & Toolchain
Observed telemetry: 258 HTTP requests, 16 mapped points, 32 subdomains, and 32 findings.

1. Asset Discovery

Subdomains, directories, and JavaScript asset analysis.

- Subfinder [Executed]: Fast passive subdomain enumeration.

- Directory Fuzzing (FFUF) [Configured]: High-performance directory/file brute-forcing.

- Deep JS Analysis [Executed]: JavaScript inspection for exposed endpoints, secrets, and client-side attack surface.
- Recursive Subdomain Scan [Executed]: Discovered subdomains are included in deeper vulnerability analysis.

2. Service & Fingerprint Analysis

Service exposure mapping and vulnerable component intelligence.

- Service Enumeration [Configured]: Open service and version discovery for externally reachable hosts.

- Technology Fingerprinting [Executed]: Software/version inference with vulnerable component correlation.
- Exploit Feasibility Review [Executed]: Evidence-based validation of likely exploit paths and impact.

3. Crawling & Attack Surface Mapping

State-aware and legacy crawling for endpoint coverage.

- Surgical State-Graph Crawler [Executed]: Maps forms, flows, and interactive states for dynamic applications.
- Deep JS Scanner (SPA) [Executed]: Headless execution for DOM attack vectors and hidden endpoints.

- Classic Legacy Spider [Executed]: Traditional href crawling used as compatibility fallback.

4. DAST & Active Verification

Automated dynamic analysis for web-layer security controls.

- OWASP ZAP (Daemon) [Executed]: Advanced DAST integration (v2.17.0). Daemon settings, API key, and port
orchestration are managed by Scan Manager.

- Nuclei Engine [Available]: Template-driven detection of known exposures and misconfigurations.

5. Active Injection Modules

Targeted exploit simulation and payload validation.

- SQLMap [Executed]: SQL Injection detection and verification.

- XSStrike [Executed]: Context-aware XSS fuzzing and payload validation.

- Commix [Available]: Command Injection detection for server-side execution vectors.

6. Risk Scoring & Reporting

Consolidation of findings, risk rating, and remediation roadmap.

- Passive Compliance Analysis [Executed]: GDPR/NIST-oriented passive checks and header posture analysis.
- Executive Risk Conclusion [Completed]: Executive risk statement with technical evidence and priority actions.

Assessment Methodology

The evaluation process follows recognized VA/PT practices aligned to NIST SP 800-115, OSSTMM and OWASP
guidance. Activities include reconnaissance, fingerprinting, misconfiguration review, vulnerability validation and
remediation guidance.

- Black-Box: external perspective without privileged internals.

- Grey-Box: targeted checks with limited context when scope data is provided.

- White-Box: code/configuration review methodology available for explicitly authorized engagements.
- All intrusive checks are executed under controlled conditions and written authorization.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 13

Strictly Confidential - Cyber Advisory LLC

Attack Vectors Executed

- SQL Injection

- SQL Injection (Boolean)

- SQL Injection (Blind)

- SQL Injection (Out of Band)

- Cross-Site Scripting (Reflected/Stored)
- Cross-Site Scripting (Blind)

- Command Injection

- Command Injection (Blind)

- Local File Inclusion

- Remote File Inclusion

- Remote File Inclusion (Out of Band)

- Code Evaluation

- Code Evaluation (Out of Band)

- Server-Side Template Injection

- HTTP Header Injection

- Open Redirection

- Expression Language Injection

- XML External Entity

- XML External Entity (Out of Band)

- Server-Side Request Forgery (Pattern Based)
- Server-Side Request Forgery (DNS)

- File Upload Security Validation

- Reflected File Download

- Insecure Reflected Content

- Web App Fingerprinting

- HTTP Methods Misconfiguration

- Cross-Origin Resource Sharing (CORS) Misconfiguration
- WebDAYV Exposure

- Windows Short Filename Enumeration
- RoR Code Execution Checks

Detected in this assessment

- Absence of Anti-CSRF Tokens

- Config

- Content Security Policy (CSP) Header Not Set
- Critical

- Cross Site Scripting (Reflected)
- Email Security

- GDPR Contact Missing

- GDPR Cookie Consent Missing
- Missing Anti-clickjacking Header
- Path Traversal

- SQL Injection - MySQL

- Security

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Exploit Finder

Page 14

Strictly Confidential - Cyber Advisory LLC

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Exploit Finder

5.C METHODOLOGY REFERENCES

References Methodologies and Techniques Used

NIST SP 800-115
https://csrc.nist.gov/pubs/sp/800/115/fi nal

OSSTMM 3

https://ww.isecom org/ OSSTMM 3. pdf
OWASP Web Security Testing Guide (WSTG)

https://owasp. or g/ ww« pr oj ect - web-security-testing-guide/
OWASP Testing Guide v4
https://owasp. or g/ ww« pdf - ar chi ve/ OMSP_Test i ng_Gui de_v4. pdf

PTES

http://ww. pent est - st andar d. or g/ i ndex. php/ Mai n_Page
OWASP Top 10

https://owasp. or g/ ww« pr oj ect -t op-ten/

5.D EVIDENCE REGISTER

Evidence hashes are computed from finding metadata and captured evidence to support integrity and traceability.

ID

DA7DA3A14E8D

670A0EODCBEC

F7D9D24FEEE1

6DEFBDB25D52

8EA68CC5D550

9D76B8ACGES9

B0328D24BC33

DBOOEODCF94A

D092DF8C647C

801A433E5994

06B303A2AAA5

4DFC3E55ABE9

317DE48D856B

E60311E9C8D0O

FO0660C0O0F92D

188615A7B607

479DB7EB4D95

60839145EEC7

367613FBD6C8

Title

SQL Injection - MySQL

SQL Injection - MySQL

SQL Injection - MySQL

SQL Injection - MySQL

Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Cross Site Scripting (Reflected)
Path Traversal

Missing Anti-clickjacking Header

Cyber Advisory LLC | www.exploitfinder.com

Severity
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

Info

Location Evidence Hash
http://testphp.vulnweb.com/userinfo.php da7da3al4e8d668504adb6afe9c6bde8
http://testphp.vulnweb.com/secured/newus70a0e0dc8ecfc7c2475087dde986ch1
http://testphp.vulnweb.com/search.php?td7d9d24feeelb1ff1005583b63769e18
http://testphp.vulnweb.com/search.php?tédefbdb25d52583d1bfalad10707e562
http://testphp.vulnweb.com/showimage.pi@ea68cc5d550cccchfcc99c0e4691804
http://testphp.vulnweb.com/product.php?®d76b8ac6e5984a4574albcdde51eede
http://testphp.vulnweb.com/listproducts. b0328d24bc337665a38003ef48844b90
http://testphp.vulnweb.com/listproducts. db00e0dcf94a5d1671b89c35ch53bfbl
http://testphp.vulnweb.com/hpp/params.pti092df8c647c364aa70f80b9c8bd758b
http://testphp.vulnweb.com/hpp/params.p801a433e5994eb0a5732e9596b69f32e
http://testphp.vulnweb.com/artists.php?a 06b303a2aaa57e8113a2ab53a6de37dc
http://testphp.vulnweb.com/userinfo.php 4dfc3e55abe9553b874717e67514cd45
http://testphp.vulnweb.com/secured/newu317de48d856bd75f3d5d15d391bdfa0d
http://testphp.vulnweb.com/guestbook.php60311e9c8d023d6c1fc13b17dab0767
http://testphp.vulnweb.com/search.php?t¢0660c00f92dae504eec71d4592b6738
http://testphp.vulnweb.com/search.php?te188615a7b60752bfe05f3ac488cd0c7b
http://testphp.vulnweb.com/hpp/?pp=%224%3db7eb4d9593fec2a796f9b010b953
60839145eec7e06b667ac6c3d763e7ce

http://testphp.vulnweb.com/cart.php

http://testphp.vulnweb.com/disclaimer.ph 367613fbd6c8dd4f5287d07302fcc30e

TLP:RED - STRICTLY CONFIDENTIAL

Page 15

Strictly Confidential - Cyber Advisory LLC

5.0 EVIDENCE REGISTER (CONTINUED)

ID Title

481422560A5A | Content Security Policy (CSP) Header Not Set
F65E59B6F7C3 | Absence of Anti-CSRF Tokens
4A05DC85855C | File Sensibile Esposto (.idea/workspace.xml)
14843F7D3CA9 | Security Headers Analysis - Grade F

GDPR Cookie Consent Missing

Severity
Info

Info

High
Medium

Medium

33C442D1404F [GDPR Art. 37-39] Contatto Privacy/DPO Assent Medium

8DC46220E9AB | [OpenDB Match] PHP 7.x EOL Critical Risks: Fr | High

8938AD8A573A Header Sicurezza Mancanti

5633E8B5B051 | PHP 5.6.40 Obsoleto

Low

Critical

7408AA3404C2 [OpenDB Match] Nginx Misconfiguration: Server | Low

AD9FAE91BA30 No HTTPS/SSL Error
FE57864D8A76 Record SPF Mancante

E6E7FA3EF5E3 | Record DMARC Mancante

Cyber Advisory LLC | www.exploitfinder.com

High
Low

Low

Location
http://testphp.vulnweb.com/high
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/
http://testphp.vulnweb.com/

http://testphp.vulnweb.com/

TLP:RED - STRICTLY CONFIDENTIAL

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Exploit Finder

Evidence Hash
481422560a5a04eb97405865293c95¢2
f65e59b6f7c31caf13b163e985165562
4a05dc85855c45cf834ccaf6435ee56a

14843f7d3ca9c90e14de6a90fadc6f71

33c442d1404f38393b3202f13b0bb527
8dc46220e9abc24d8ac127a7d4fb8a27
8938ad8a573aa9f6a72b939e14b5a951
5633e8b5b0517dc3436e8allad20ee9d
7408aa3404c2e0818b8d22ad284912aa
ad9fae91ba307f30dd86276cd0804c17
fe57864d8a76c5715fa8c55671a43747

e6e7f43ef5e3370ddf76231a64983bbf

Page 16

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC

6. DETAILED TECHNICAL FINDINGS

1. PHP 5.6.40 Obsoleto

Description: PHP legacy estremamente vulnerabile.

Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: 5633E8B5B051

First Observed2026-02-08 00:49:51

Method: GET

Impact: Critical System Compromise: Full RCE or Database Access.

Risk Score: 9.5

CVSS: Risk score inferred from severity: Critical (9.5)

Evidence Hash5633e8b5b0517dc3436e8alla420ee9d59d0b556a00df 61ce911b794aaf 07ec6
Location: http://testphp. vul nweb. cont

Occurrences: 2 total instances
- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ected during Passive Audit

Recommendation:
Verificare la configurazione secondo le best practices di sicurezza.

2. SQL Injection - MySQL

Description: SQL injection may be possible.
Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: DA7DA3A14E8D

First Observed2026-02-08 01:03:48

Tool: OWASP ZAP

Method: GET

Parameter: uname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium
Risk Score: 8.0
CVSsS: Risk score inferred from severity: High (8.0)

Evidence Hashda7da3al4e8d668504adb6af e9c6bde8e36ef abed7e7d7bb6f 994c25a9f d8be9
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com

Exploit Finder

CRITICAL

Page 17

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Location: http://testphp. vul nweb. con useri nf o. php

Occurrences: 2 total instances
- http://testphp.vulnweb.com/userinfo.php

Proof of Concept / Technical Evidence:

You have an error in your SQ. syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.

In general, type check all data on the server side.

If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by "?'

If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.

Do *not* concatenate strings into queries in the stored procedure, or use 'exec’, 'exec immediate’, or equivalent
functionality!

Do not create dynamic SQL queries using simple string concatenation.

Escape all data received from the client.

Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.

Apply the principle of least privilege by using the least privileged database user possible.

In particular, avoid using the 'sa’ or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.

Grant the minimum database access that is necessary for the application.

3. SQL Injection - MySQL

Description: SQL injection may be possible.
Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 670A0EODCBEC

First Observed2026-02-08 01:03:41

Tool: OWASP ZAP

Method: GET

Parameter: uuname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash670a0e0dc8ecf c7¢2475087dde986ch14bbe05640e8c724b3bbed6973bc1c318
Location: http://testphp. vul nweb. conl secur ed/ newuser. php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/secured/newuser.php

Proof of Concept / Technical Evidence:

You have an error in your SQL syntax

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 18

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Recommendation:

Do not trust client side input, even if there is client side validation in place.

In general, type check all data on the server side.

If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by "?'

If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.

Do *not* concatenate strings into queries in the stored procedure, or use 'exec’, 'exec immediate’, or equivalent
functionality!

Do not create dynamic SQL queries using simple string concatenation.

Escape all data received from the client.

Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.

Apply the principle of least privilege by using the least privileged database user possible.

In particular, avoid using the 'sa’ or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.

Grant the minimum database access that is necessary for the application.

4. SQL Injection - MySQL

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: F7DOD24FEEEL

First Observed2026-02-08 01:03:34

Tool: OWASP ZAP

Method: GET

Parameter: searchFor

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.
Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hasht 7d9d24f eeelblf f 1005583b63769e18f 470cf 30d1be032f 3cb577095a32e895
Location: http://testphp. vul nweb. conl sear ch. php?t est =query

Occurrences: 2 total instances
- http:/testphp.vulnweb.com/search.php?test=query

Proof of Concept / Technical Evidence:

You have an error in your SQL syntax

Recommendation:

Do not trust client side input, even if there is client side validation in place.

In general, type check all data on the server side.

If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by "?'

If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.

Do *not* concatenate strings into queries in the stored grocedure or use 'exec', 'exec immediate', or equivalent
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 19

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

functionality!

Do not create dynamic SQL queries using simple string concatenation.

Escape all data received from the client.

Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.

Apply the principle of least privilege by using the least privileged database user possible.

In particular, avoid using the 'sa’ or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.

Grant the minimum database access that is necessary for the application.

5. SQL Injection - MySQL

Description: SQL injection may be possible.

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 6DEFBDB25D52

First Observed2026-02-08 01:03:32

Tool: OWASP ZAP

Method: GET

Parameter: test

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.
Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash6def bdb25d52583d1bf alad10707e56246834b0e5f 0c7c6e1975c24c1f e92f 86
Location: http://testphp. vul nweb. conl sear ch. php?t est =927
Occurrences: 2 total instances

- http://testphp.vulnweb.com/search.php?test=%27

Proof of Concept / Technical Evidence:

You have an error in your SQL syntax

Recommendation:
Do not trust client side input, even if there is client side validation in place.
In general, type check all data on the server side.
If the application uses JDBC, use PreparedStatement or CallableStatement, with parameters passed by "?'
If the application uses ASP, use ADO Command Objects with strong type checking and parameterized queries.
If database Stored Procedures can be used, use them.
Do *not* concatenate strings into queries in the stored procedure, or use 'exec’, 'exec immediate’, or equivalent
functionality!
Do not create dynamic SQL queries using simple string concatenation.
Escape all data received from the client.
Apply an 'allow list' of allowed characters, or a 'deny list' of disallowed characters in user input.
Apply the principle of least privilege by using the least privileged database user possible.
In particular, avoid using the 'sa’ or 'db-owner' database users. This does not eliminate SQL injection, but minimizes its
impact.
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 20

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Grant the minimum database access that is necessary for the application.

6. Cross Site Scripting (Reflected)

Description:

Validation:

Finding ID:

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Low. Evidence gathered through controlled testing workflow.

8EAG8CC5D550

First Observed2026-02-08 01:02:12

Tool:
Method:
Parameter:

Impact:

OWASP ZAP
GET
file

Severe Business Risk: Sensitive Data Leak or Admin Takeover.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 21

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Confidence: Low

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash8ea68cc5d550cccchf cc99c0e46918048bch420d4624c5ede0da7292b41f 0e77

Location: http://testphp. vul nweb. conl show nage. php?fil e=¥3Cscr | pt ¥8Eal ert %2819%29%3BY¥8CY¥2FscRi pt
YBE

Occurrences: 2 total instances
- http://testphp.vulnweb.com/showimage.php?file=%3Cscrlpt%3Ealert%6281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:
<scrlpt>alert(1);</scR pt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other

powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 22

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

7. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.
Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 23

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 9D76BBACBES9

First Observed2026-02-08 01:02:09

Tool: OWASP ZAP

Method: GET

Parameter: pic

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash9d76b8ac6e5984a4574albcdde51leedea202596734dbdcd941a410db565bb640

Location: http://testphp. vul nweb. conl product . php?pi c=%8Cscr | pt ¥%3Eal ert %281%29%3B¥38CY¥2FscRi pt ¥8E

Occurrences: 2 total instances
- http://testphp.vulnweb.com/product.php?pic=%3Cscrlpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrlpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 24

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

8. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 25

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.
Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: B0328D24BC33

First Observed2026-02-08 01:02:07

Tool: OWASP ZAP

Method: GET

Parameter: cat

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSss: Risk score inferred from severity: High (8.0)

Evidence Hashb0328d24bc337665a38003ef 48844b90c7c4ef 8b3cae91844507361e40f d4d6e

Location: http://testphp. vul nweb. cont | i st products. php?cat =%3Cscr | pt ¥3Eal ert %281%29%3B¥3CY¥2FscRi
pt ¥BE

Occurrences: 2 total instances
- http://testphp.vulnweb.com/listproducts.php?cat=%3Cscrlpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:
<scrlpt>alert(1);</scR pt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially

important when transmitting data between different components, or when generating outputs that can contain multiple
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 26

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as “red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 27

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

9. Cross Site Scripting (Reflected)

Description:

Validation:

Finding ID:

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Medium. Evidence gathered through controlled testing workflow.

DBOOEODCF94A

First Observed2026-02-08 01:02:02

Tool:
Method:
Parameter:
Impact:
Confidence:
Risk Score:

CVSS:

OWASP ZAP

GET

artist

Severe Business Risk: Sensitive Data Leak or Admin Takeover.
Medium

8.0

Risk score inferred from severity: High (8.0)
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 28

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Evidence Hashdb00e0dcf 94a5d1671b89c35ch53bf blaf aeblecf 38f 9e699520df 430216f 9bc

Location: http://testphp. vul nweb. cont | i st products. php?arti st=%3Cscr | pt ¥8Eal ert ¥281%29%3B¥3CY2Fs
cRi pt YBE

Occurrences: 2 total instances
- http://testphp.vulnweb.com/listproducts.php?artist=%3Cscrlpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:
<scrlpt>alert(1);</scR pt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and framewaorks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable

inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 29

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

10. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone
allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 30

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: D092DF8C647C

First Observed2026-02-08 01:01:59

Tool: OWASP ZAP

Method: GET

Parameter: pp

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVss: Risk score inferred from severity: High (8.0)

Evidence Hashd092df 8c647c364aa70f 80b9c8bd758b2a24cac740d7f f 4a9ac436e79ea35d26

Location: http://testphp. vul nweb. conf hpp/ par ans. php?p=val i d&pp=%3Cscr | pt ¥BEal ert ¥281%29%3BY8C/2
FscRi pt ¥8E

Occurrences: 2 total instances
- http:/testphp.vulnweb.com/hpp/params.php?p=valid&pp=%3Cscript%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

<scrlpt>alert(1);</scR pt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 31

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."”

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

11. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced

with malicious code, or visit a malicious web page containing a web form, which when posted to the
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 32

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 801A433E5994

First Observed2026-02-08 01:01:56

Tool: OWASP ZAP

Method: GET

Parameter: p

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash801a433e5994eb0a5732e9596b69f 32e5aace2e83e1b54288d7c1f 03f 4442418

Location: http://testphp. vul nweb. conl hpp/ par ans. php?p=%8Cscr | pt ¥8Eal ert ¥281%29%3BY¥8CY%2FscRi pt ¥3
E&pp=12

Occurrences: 2 total instances
- http://testphp.vulnweb.com/hpp/params.php?p=%3Cscrlpt%3Ealert%281%29%3B%3C%2FscRipt%3E&pp=12

Proof of Concept / Technical Evidence:

<scrlpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the

appropriate encoding on all non-alphanumeric characters.
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 33

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 34

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

12. Cross Site Scripting (Reflected)

Description:

Validation:

Finding ID:

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Medium. Evidence gathered through controlled testing workflow.

06B303A2AAA5

First Observed2026-02-08 01:01:48

Tool:
Method:
Parameter:
Impact:
Confidence:
Risk Score:

CVSS:

OWASP ZAP

GET

artist

Severe Business Risk: Sensitive Data Leak or Admin Takeover.
Medium

8.0

Risk score inferred from severity: High (8.0)
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 35

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Evidence Hash06b303a2aaa57e8113a2ab53a6de37dc29e498f 7c7b23ee8f f 83cc98f bladb68

Location: http://testphp. vul nweb. confartists. php?arti st=%3Cscr | pt %3Eal ert %281%29%3B¥8C¥2FscRi pt
YBE

Occurrences: 2 total instances
- http://testphp.vulnweb.com/artists.php?artist=%3Cscrlpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:
<scrlpt>alert(1);</scR pt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and framewaorks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable

inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 36

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

13. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone
allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 37

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 4DFC3E55ABE9

First Observed2026-02-08 01:01:29

Tool: OWASP ZAP

Method: GET

Parameter: uname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVss: Risk score inferred from severity: High (8.0)

Evidence Hash4df c3e55abe9553b874717e67514cd45130ab8ddda01295d94de25b32¢56f aa3
Location: http://testphp. vul nweb. conf useri nf o. php

Occurrences: 2 total instances
- http://testphp.vulnweb.com/userinfo.php

Proof of Concept / Technical Evidence:
""<scrlpt>alert(1l);</scRipt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 38

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

14. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 39

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 317DE48D856B

First Observed2026-02-08 01:01:24

Tool: OWASP ZAP

Method: GET

Parameter: uuname

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash317de48d856bd75f 3d5d15d391bdf a0df bd2a239bb076f f 56e6¢f 9a9e0cdeall
Location: http://testphp. vul nweb. conl secur ed/ newuser . php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/secured/newuser.php

Proof of Concept / Technical Evidence:

<script>alert(1l);</scRipt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 40

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

15. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,

modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 41

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Validation:

Finding ID:

his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Medium. Evidence gathered through controlled testing workflow.

E60311E9C8D0

First Observed2026-02-08 01:01:21

Tool:
Method:
Parameter:
Impact:
Confidence:
Risk Score:

CVSS:

OWASP ZAP

GET

name

Severe Business Risk: Sensitive Data Leak or Admin Takeover.
Medium

8.0

Risk score inferred from severity: High (8.0)

Evidence Hashe60311e9¢8d023d6c1f c13b17dab07677f ab92122021¢c2844657bb9b016f e446

Location:

http://testphp. vul nweb. conl guest book. php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/guestbook.php

Proof of Concept / Technical Evidence:

</ strong><scrl| pt>al ert(1); </scRi pt >

Recommendation:

Phase: Architecture and Design
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 42

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the

application even if a component is reused or moved elsewhere.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 43

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

16. Cross Site Scripting (Reflected)

Description:

Validation:

Finding ID:

Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Medium. Evidence gathered through controlled testing workflow.

FO660C00F92D

First Observed2026-02-08 01:01:18

Tool:
Method:
Parameter:
Impact:
Confidence:
Risk Score:

CVSS:

OWASP ZAP

GET

searchFor

Severe Business Risk: Sensitive Data Leak or Admin Takeover.
Medium

8.0

Risk score inferred from severity: High (8.0)
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 44

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Evidence Hashf 0660c00f 92dae504eec71d4592b673836de5792e6f 16315d690314ce3ef f ed3
Location: http://testphp. vul nweb. conf sear ch. php?t est =query

Occurrences: 2 total instances
- http://testphp.vulnweb.com/search.php?test=query

Proof of Concept / Technical Evidence:
</ h2><scrl pt>al ert(1); </scRi pt ><h2>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable

inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform

it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 45

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

17. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the
vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page

containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 46

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Finding ID: 188615A7B607

First Observed2026-02-08 01:01:13

Tool: OWASP ZAP

Method: GET

Parameter: test

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.
Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash188615a7b60752bf e05f 3ac488cd0c7bha022bcc03dd315bda26a7f aacaea79bc

Location: http://testphp. vul nweb. conl sear ch. php?t est =927%22%3Cscr | pt ¥8Eal ert %281%29%3B¥8C¥2FscR
i pt ¥8E

Occurrences: 2 total instances
- http:/testphp.vulnweb.com/search.php?test=%27%22%3Cscrlpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

""<scrlpt>alert(1);</scRipt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 47

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

18. Cross Site Scripting (Reflected)

Description: Cross-site Scripting (XSS) is an attack technique that involves echoing attacker-supplied code into a
user's browser instance. A browser instance can be a standard web browser client, or a browser object
embedded in a software product such as the browser within WinAmp, an RSS reader, or an email client.
The code itself is usually written in HTML/JavaScript, but may also extend to VBScript, ActiveX, Java,
Flash, or any other browser-supported technology.

When an attacker gets a user's browser to execute his/her code, the code will run within the security
context (or zone) of the hosting web site. With this level of privilege, the code has the ability to read,
modify and transmit any sensitive data accessible by the browser. A Cross-site Scripted user could have
his/her account hijacked (cookie theft), their browser redirected to another location, or possibly shown
fraudulent content delivered by the web site they are visiting. Cross-site Scripting attacks essentially
compromise the trust relationship between a user and the web site. Applications utilizing browser object
instances which load content from the file system may execute code under the local machine zone

allowing for system compromise.

There are three types of Cross-site Scripting attacks: non-persistent, persistent and DOM-based.
Non-persistent attacks and DOM-based attacks require a user to either visit a specially crafted link laced
with malicious code, or visit a malicious web page containing a web form, which when posted to the

vulnerable site, will mount the attack. Using a malicious form will oftentimes take place when the
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 48

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

vulnerable resource only accepts HTTP POST requests. In such a case, the form can be submitted
automatically, without the victim's knowledge (e.g. by using JavaScript). Upon clicking on the malicious
link or submitting the malicious form, the XSS payload will get echoed back and will get interpreted by
the user's browser and execute. Another technique to send almost arbitrary requests (GET and POST)
is by using an embedded client, such as Adobe Flash.

Persistent attacks occur when the malicious code is submitted to a web site where it's stored for a
period of time. Examples of an attacker's favorite targets often include message board posts, web malil
messages, and web chat software. The unsuspecting user is not required to interact with any additional
site/link (e.g. an attacker site or a malicious link sent via email), just simply view the web page
containing the code.

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 479DB7EB4D95

First Observed2026-02-08 01:01:02

Tool: OWASP ZAP

Method: GET

Parameter: pp

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Medium

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash479db7eb4d9593f ec2a796f 9b010b953612c0251ae4f c7e7a10d8cc9dc3a0f 35

Location: http://testphp. vul nweb. conl hpp/ ?pp=2%22%BE¥BCscr | pt ¥BEal ert ¥281%R29%8B¥8CY¥2FscRi pt ¥8E

Occurrences: 2 total instances
- http://testphp.vulnweb.com/hpp/?pp=%22%3E%3Cscrlpt%3Ealert%281%29%3B%3C%2FscRipt%3E

Proof of Concept / Technical Evidence:

"><scrlpt>alert(1l);</scRipt>

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's
Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.

Phases: Implementation; Architecture and Design

Understand the context in which your data will be used and the encoding that will be expected. This is especially
important when transmitting data between different components, or when generating outputs that can contain multiple
encodings at the same time, such as web pages or multi-part mail messages. Study all expected communication
protocols and data representations to determine the required encoding strategies.

For any data that will be output to another web page, especially any data that was received from external inputs, use the
appropriate encoding on all non-alphanumeric characters.

Consult the XSS Prevention Cheat Sheet for more details on the types of encoding and escaping that are needed.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 49

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server
side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have
been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would
be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation between data and code. These
mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on
the developer to provide this capability at every point where output is generated.

Phase: Implementation

For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an
encoding is not specified, the web browser may choose a different encoding by guessing which encoding is actually
being used by the web page. This can cause the web browser to treat certain sequences as special, opening up the
client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that
support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a
complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the
HttpOnly flag is set.

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."

Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the
application even if a component is reused or moved elsewhere.

19. Path Traversal

Description: The Path Traversal attack technique allows an attacker access to files, directories, and commands that
potentially reside outside the web document root directory. An attacker may manipulate a URL in such a
way that the web site will execute or reveal the contents of arbitrary files anywhere on the web server.
Any device that exposes an HTTP-based interface is potentially vulnerable to Path Traversal.

Most web sites restrict user access to a specific portion of the file-system, typically called the "web
document root" or "CGI root" directory. These directories contain the files intended for user access and

the executable necessary to drive web application functionality. To access files or execute commands
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 50

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

anywhere on the file-system, Path Traversal attacks will utilize the ability of special-characters

sequences.

The most basic Path Traversal attack uses the "../" special-character sequence to alter the resource
location requested in the URL. Although most popular web servers will prevent this technique from
escaping the web document root, alternate encodings of the "../" sequence may help bypass the security
filters. These method variations include valid and invalid Unicode-encoding ("..%u2216" or "..%c0%af")
of the forward slash character, backslash characters ("..\") on Windows-based servers, URL encoded
characters "%2e%2e%2f"), and double URL encoding ("..%255c") of the backslash character.

Even if the web server properly restricts Path Traversal attempts in the URL path, a web application
itself may still be vulnerable due to improper handling of user-supplied input. This is a common problem
of web applications that use template mechanisms or load static text from files. In variations of the
attack, the original URL parameter value is substituted with the file name of one of the web application's
dynamic scripts. Consequently, the results can reveal source code because the file is interpreted as text
instead of an executable script. These techniques often employ additional special characters such as
the dot (".") to reveal the listing of the current working directory, or "%00" NULL characters in order to

bypass rudimentary file extension checks.
Validation: Low. Evidence gathered through controlled testing workflow.
Finding ID: 60839145EECY

First Observed2026-02-08 00:51:01

Tool: OWASP ZAP

Method: GET

Parameter: price

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Confidence: Low

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash60839145eec7e06b667ac6c3d763e7ce7a21f 66f dldbcc08dc72f 8f 198d363eb
Location: http://testphp. vul nweb. coni cart. php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/cart.php

Proof of Concept / Technical Evidence:

Detected during controlled assessnent and verification workfl ow.

Recommendation:

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use an allow list of acceptable
inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform
it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
deny list). However, deny lists can be useful for detecting potential attacks or determining which inputs are so malformed
that they should be rejected outright.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 51

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

When performing input validation, consider all potentially relevant properties, including length, type of input, the full
range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue."”

For filenames, use stringent allow lists that limit the character set to be used. If feasible, only allow a single "." character
in the filename to avoid weaknesses, and exclude directory separators such as "/". Use an allow list of allowable file
extensions.

Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that can be dangerous. A
sanitizing mechanism can remove characters such as '.' and ;' which may be required for some exploits. An attacker can
try to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose the attacker injects a . inside a
filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character resulting in the valid filename,
"sensitiveFile". If the input data are now assumed to be safe, then the file may be compromised.

Inputs should be decoded and canonicalized to the application's current internal representation before being validated.
Make sure that your application does not decode the same input twice. Such errors could be used to bypass allow list
schemes by introducing dangerous inputs after they have been checked.

Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical version of the

pathname, which effectively removes ".." sequences and symbolic links.

Run your code using the lowest privileges that are required to accomplish the necessary tasks. If possible, create
isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not
immediately give the attacker access to the rest of the software or its environment. For example, database applications
rarely need to run as the database administrator, especially in day-to-day operations.

When the set of acceptable objects, such as filenames or URLS, is limited or known, create a mapping from a set of
fixed input values (such as numeric IDs) to the actual filenames or URLSs, and reject all other inputs.

Run your code in a "jail"* or similar sandbox environment that enforces strict boundaries between the process and the
operating system. This may effectively restrict which files can be accessed in a particular directory or which commands
can be executed by your software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some
protection. For example, java.io.FilePermission in the Java SecurityManager allows you to specify restrictions on file
operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of your application may
still be subject to compromise.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 52

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

20. File Sensibile Esposto (.idea/workspace.xml)

Description: Accessibile a: http://testphp.vulnweb.com/.idea/workspace.xml
Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: 4A05DC85855C

First Observed2026-02-08 00:49:57

Method: GET

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Risk Score: 8.0

CVss: Risk score inferred from severity: High (8.0)

Evidence Hash4a05dc85855c45cf 834ccaf 6435ee56ab7cOecle8l6edec16b8be19853933753
Location: http://testphp. vul nweb. cont

Occurrences: 2 total instances
- http:/testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ected during Passive Audit

Recommendation:
Verificare la configurazione secondo le best practices di sicurezza.

21. [OpenDB Match] PHP 7.x EOL Critical Risks: Framework: PHP/5.6.40-38+ubuntu20.04.1+deb.surylorg+1

Description: Status: Rilevamento confermato (Offline DB)
Descrizione: PHP 7.4 & End-of-Life. Esposto a RCE (CVE-2022-31629) e Memory Corruption.
CVE: CVSS 9.8
Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: 8DC46220E9AB

First Observed2026-02-08 00:49:54

Method: GET

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hash8dc46220e9abc24d8ac127a7d4f b8a274bc9e9713f 8ea7889350ch52f 2¢f bag9
Location: http://testphp. vul nweb. con

Occurrences: 2 total instances
- http:/testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 53

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC

Det ected during Passive Audit

Recommendation:
Verificare la configurazione secondo le best practices di sicurezza.

22. No HTTPS/SSL Error

Description: Connessione non sicura

Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: ADIFAE91BA30

First Observed2026-02-08 00:49:48

Method: GET

Impact: Severe Business Risk: Sensitive Data Leak or Admin Takeover.

Risk Score: 8.0

CVSS: Risk score inferred from severity: High (8.0)

Evidence Hashad9f ae91ba307f 30dd86276cd0804c17ac52c692837f e470aad265d44d377934
Location: http://testphp. vul nweb. cont

Occurrences: 2 total instances
- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ected during Passive Audit

Recommendation:
Verificare la configurazione secondo le best practices di sicurezza.

23. Security Headers Analysis - Grade F

Exploit Finder

Description: ? HTTP Strict Transport Security (HSTS): Helps protect websites against protocol downgrade attacks

and cookie hijacking

? Content Security Policy (CSP): Helps prevent Cross-Site Scripting (XSS) and data injection attacks

? X-Frame-Options: Protects against clickjacking attacks by preventing your site from being embedded

in iframes

? X-Content-Type-Options: Prevents browsers from MIME-sniffing a response from the declared

content-type

? Referrer Policy: Controls how much referrer information is included with requests
? Permissions Policy: Controls which browser features and APls can be used in the browser

Validation: Missing 6 security headers. Grade: F (Fail). Evidence gathered through controlled testing workflow.

Finding ID: 14843F7D3CA9
First Observed2026-02-08 00:49:57

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com

Page 54

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder
Tool: Header Analyzer

Method: GET

Impact: Moderate Risk: User Session Manipulation or Partial Disclosure.

Confidence: Certain

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Evidence Hash14843f 7d3ca9c90e14de6a90f a9c6f 71a54ef 1b3368266ab765422c28e1443b6
Location: http://testphp. vul nweb. com

Occurrences: 2 total instances
- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ected during Passive Audit

Recommendation:

Strict-Transport-Security: max-age=31536000; includeSubDomains
Content-Security-Policy: default-src 'self'

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

Referrer-Policy: no-referrer-when-downgrade

Permissions-Policy: camera=(), microphone=(), geolocation=()

24. GDPR Cookie Consent Missing

Description: No valid cookie consent banner was detected on the assessed target. Checks performed: Cookie Policy
link, script vendors (30+ markers), consent DOM elements, and accept/reject controls.

Validation: Nessun Cookie Banner, CMP (Consent Management Platform) o meccanismo di consenso rilevato.
Evidence gathered through controlled testing workflow.

Tool: GDPR Compliance Scanner
Method: GET
Impact: Moderate Risk: User Session Manipulation or Partial Disclosure.

Confidence: Firm

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)
Location: http://testphp. vul nweb. cont

Occurrences: 2 total instances
- http:/testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ected during Passive Audit Checks performed: Cookie Policy link, script vendors (30+ markers), consent DOM

el enents, and accept/reject controls.

Recommendation:
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 55

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

1. Implement a certified CMP (e.g., Cookiebot, OneTrust, iubenda).

2. Block all tracking scripts before consent is granted.

3. Provide granular consent controls by cookie category.

4. Store auditable proof of consent, including timestamp and preference state.

25. [GDPR Art. 37-39] Contatto Privacy/DPO Assente

Description: Non € stato rilevato un contatto esplicito per la privacy (DPO, privacy@, ecc.)

Validation: Nessun indirizzo email privacy@, dpo@ o link a modulo contatto privacy trovato. Evidence gathered
through controlled testing workflow.

Finding ID: 33C442D1404F

First Observed2026-02-08 00:49:57

Tool: GDPR Compliance Scanner
Method: GET
Impact: Moderate Risk: User Session Manipulation or Partial Disclosure.

Confidence: Firm

Risk Score: 5.5

CVSS: Risk score inferred from severity: Medium (5.5)

Evidence Hash33c442d1404f 38393b3202f 13b0bb52708435be62f 1f f f a3d6f 88d2d13f 2eb4a
Location: http://testphp. vul nweb. com

Occurrences: 2 total instances
- http://testphp.vulnweb.com/
Proof of Concept / Technical Evidence:

Det ect ed during Passive Audit

Recommendation:

1. Create a dedicated privacy contact email (e.g., privacy@domain.com, dpo@domain.com)

2. Publish the contact details in the Privacy Notice

3. If a DPO is mandatory, appoint and register the DPO with the competent supervisory authority

26. Header Sicurezza Mancanti LOW

Description: Strict-Transport-Security
Content-Security-Policy
X-Frame-Options
Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: 8938ADBA573A
First Observed2026-02-08 00:49:54

Method: GET
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 56

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Evidence Hashg938ad8a573aa9f 6a72b939e14b5a951480074b434740d0c3e30bf a677ale78c
Location: http://testphp.vul nweb. com

Occurrences: 2 total instances
- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ect ed during Passive Audit

Recommendation:
Verificare la configurazione secondo le best practices di sicurezza.

27. [OpenDB Match] Nginx Misconfiguration: Server: nginx/1.19.0 LOW

Description: Status: Rilevamento confermato (Offline DB)
Descrizione: Verificare settings per buffer overflow e header exposure.
CVE: N/A
Fonte: OpenDB Exploit Database (Cached)

Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: 7408AA3404C2

First Observed2026-02-08 00:49:51

Method: GET

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Evidence Hash7408aa3404c2e0818b8d22ad284912aaf 8846007779e692f 67854eacd28ed71e
Location: http://testphp. vul nweb. com

Occurrences: 2 total instances
- http://testphp.vulnweb.com/
Proof of Concept / Technical Evidence:

Det ect ed during Passive Audit

Recommendation:
Verificare la configurazione secondo le best practices di sicurezza.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 57

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

28. Record SPF Mancante LOW

Description: Rischio SPAM/Spoofing

Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: FE57864D8A76

First Observed2026-02-08 00:49:48

Method: GET

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVss: Risk score inferred from severity: Low (3.1)

Evidence Hashf e57864d8a76c5715f a8c55671a43747c98f 3269bed9d678f ee903f e20b19082
Location: http://testphp. vul nweb. cont

Occurrences: 2 total instances
- http:/testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ected during Passive Audit

Recommendation:
Verificare la configurazione secondo le best practices di sicurezza.

29. Record DMARC Mancante LOW

Description: Rischio BEC limitato

Validation: Observed. Evidence gathered through controlled testing workflow.
Finding ID: E6E7F43EF5E3

First Observed2026-02-08 00:49:48

Method: GET

Impact: Low Risk: Information Gathering or Best Practice Violation.

Risk Score: 3.1

CVSS: Risk score inferred from severity: Low (3.1)

Evidence Hashe6e7f 43ef 53370ddf 76231a64983bbf 671e59¢8c4059f 073edf 3f 90f 9f 972¢cb
Location: http://testphp. vul nweb. com

Occurrences: 2 total instances
- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:
Det ect ed during Passive Audit

Recommendation:

Verificare la configurazione secondo le best practices di sicurezza.
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 58

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

30. Missing Anti-clickjacking Header INFO

Description: The response does not protect against 'ClickJacking' attacks. It should include either
Content-Security-Policy with 'frame-ancestors' directive or X-Frame-Options.

Validation: Medium. Evidence gathered through controlled testing workflow.
Finding ID: 367613FBD6C8

First Observed2026-02-08 00:50:10

Tool: OWASP ZAP

Method: GET

Parameter: header-x-frame

Impact: Low Risk: Information Gathering or Best Practice Violation.

Confidence: Medium

Risk Score: 0.0

CVss: Risk score inferred from severity: Info (0.0)

Evidence Hash367613f bd6c8dd4f 5287d07302f cc30ech4281ad4bd76738c21e5ab3d5da2854
Location: http://testphp. vul nweb. cont di scl ai ner. php

Occurrences: 2 total instances

- http://testphp.vulnweb.com/disclaimer.php

Proof of Concept / Technical Evidence:

Det ected during control |l ed assessnent and verification workfl ow

Recommendation:

Modern Web browsers support the Content-Security-Policy and X-Frame-Options HTTP headers. Ensure one of them is
set on all web pages returned by your site/app.

If you expect the page to be framed only by pages on your server (e.g. it's part of a FRAMESET) then you'll want to use
SAMEORIGIN, otherwise if you never expect the page to be framed, you should use DENY. Alternatively consider
implementing Content Security Policy's "frame-ancestors" directive.

31. Content Security Policy (CSP) Header Not Set INFO

Description: Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain
types of attacks, including Cross Site Scripting (XSS) and data injection attacks. These attacks are used
for everything from data theft to site defacement or distribution of malware. CSP provides a set of
standard HTTP headers that allow website owners to declare approved sources of content that browsers
should be allowed to load on that page ? covered types are JavaScript, CSS, HTML frames, fonts,
images and embeddable objects such as Java applets, ActiveX, audio and video files.

Validation: High. Evidence gathered through controlled testing workflow.
Finding ID: 481422560A5A

First Observed2026-02-08 00:50:10
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 59

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder
Tool: OWASP ZAP

Method: GET

Parameter: header-csp

Impact: Low Risk: Information Gathering or Best Practice Violation.

Confidence: High

Risk Score: 0.0

CVSss: Risk score inferred from severity: Info (0.0)

Evidence Hash481422560a5a04eb97405865293c95c2de99368050ec2850811a7eede42a231e
Location: http://testphp. vul nweb. cont hi gh

Occurrences: 2 total instances
- http://testphp.vulnweb.com/high

Proof of Concept / Technical Evidence:

Det ected during controlled assessnent and verification workfl ow.

Recommendation:

Ensure that your web server, application server, load balancer, etc. is configured to set the Content-Security-Policy
header.

32. Absence of Anti-CSRF Tokens INFO

Description: No Anti-CSRF tokens were found in a HTML submission form.
A cross-site request forgery is an attack that involves forcing a victim to send an HTTP request to a
target destination without their knowledge or intent in order to perform an action as the victim. The
underlying cause is application functionality using predictable URL/form actions in a repeatable way.
The nature of the attack is that CSRF exploits the trust that a web site has for a user. By contrast,
cross-site scripting (XSS) exploits the trust that a user has for a web site. Like XSS, CSRF attacks are
not necessarily cross-site, but they can be. Cross-site request forgery is also known as CSRF, XSRF,
one-click attack, session riding, confused deputy, and sea surf.

CSREF attacks are effective in a number of situations, including:
* The victim has an active session on the target site.

* The victim is authenticated via HTTP auth on the target site.
* The victim is on the same local network as the target site.

CSRF has primarily been used to perform an action against a target site using the victim's privileges, but
recent techniques have been discovered to disclose information by gaining access to the response. The
risk of information disclosure is dramatically increased when the target site is vulnerable to XSS,
because XSS can be used as a platform for CSRF, allowing the attack to operate within the bounds of
the same-origin policy.
Validation: Low. Evidence gathered through controlled testing workflow.
TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 60

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

Finding ID: F65E59B6F7C3

First Observed2026-02-08 00:50:10

Tool: OWASP ZAP

Method: GET

Parameter: csrf-token

Impact: Low Risk: Information Gathering or Best Practice Violation.
Confidence: Low

Risk Score: 0.0

CVSS: Risk score inferred from severity: Info (0.0)

Evidence Hasht 65e59b6f 7c31caf 13b163e9851655624f Ob6acc8chdcf 09dee1944574b1d115
Location: http://testphp. vul nweb. com

Occurrences: 2 total instances
- http://testphp.vulnweb.com/

Proof of Concept / Technical Evidence:

<f orm acti on="sear ch. php?t est =query" net hod="post">

Recommendation:

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.

For example, use anti-CSRF packages such as the OWASP CSRFGuard.

Phase: Implementation
Ensure that your application is free of cross-site scripting issues, because most CSRF defenses can be bypassed using
attacker-controlled script.

Phase: Architecture and Design

Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be
sure that the nonce is not predictable (CWE-330).

Note that this can be bypassed using XSS.

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation
request to ensure that the user intended to perform that operation.
Note that this can be bypassed using XSS.

Use the ESAPI Session Management control.
This control includes a component for CSRF.

Do not use the GET method for any request that triggers a state change.
Phase: Implementation

Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate
functionality, because users or proxies may have disabled sending the Referer for privacy reasons.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 61

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

7. REMEDIATION TRACKING PLAN

This section provides a structured remediation plan with assigned ownership, priority, and target SLA based on finding
severity. Deadlines follow industry-standard timeframes aligned with PCI DSS and NIST guidelines.

Remediation SLA Reference

Severity Priority Target SLA Guidance
Critical P1 24-72 hours Immediate containment. Emergency patch. Executive escalation required.
High P2 7-14 days Priority remediation in next change window. Verify within 14 days.
Medium P3 30-60 days Scheduled remediation. Include in next sprint/maintenance cycle.
Low P4 90 days Address during regular maintenance. Monitor for escalation.
Info P5 Best effort Informational. Consider hardening. No immediate action required.

Finding Remediation Register

PHP 5.6.40 Obsoleto Critical 24-72 hours [Assign] Open [Set]
2 | SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []
3 | SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []
4 SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []
5 | SQL Injection - MySQL High P2 7-14 days [Assign] Open [Set] []
6 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] [1]
7 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
8 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
9 Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
10 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
11 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
12 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
13 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
14 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
15 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
16 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
17 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
18 | Cross Site Scripting (Reflected) High P2 7-14 days [Assign] Open [Set] []
19 | Path Traversal High P2 7-14 days [Assign] Open [Set] []
20 | File Sensibile Esposto (.idea/wo High P2 7-14 days [Assign] Open [Set] []
21 | [OpenDB Match] PHP 7.x EOL Criti High P2 7-14 days [Assign] Open [Set] []
22 | No HTTPS/SSL Error High P2 7-14 days [Assign] Open [Set] []
23 | Security Headers Analysis - Grad Medium P3 30-60 days [Assign] Open [Set] []

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 62

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

7. REMEDIATION TRACKING (CONTINUED)

GDPR Cookie Consent Missing Medium 30-60 days [Assign] Open [Set]
25 | [GDPR Art. 37-39] Contatto Priva Medium P3 30-60 days [Assign] Open [Set] []
26 | Header Sicurezza Mancanti Low P4 90 days [Assign] Open [Set] []
27 | [OpenDB Match] Nginx Misconfigur Low P4 90 days [Assign] Open [Set] []
28 | Record SPF Mancante Low P4 90 days [Assign] Open [Set] []
29 | Record DMARC Mancante Low P4 90 days [Assign] Open [Set] []
30 | Missing Anti-clickjacking Header Info P5 Best effort [Assign] Open [Set] []
31 | Content Security Policy (CSP) He Info P5 Best effort [Assign] Open [Set] []
32 | Absence of Anti-CSRF Tokens Info P5 Best effort [Assign] Open [Set] []

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 63

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

8. RESIDUAL RISK STATEMENT

This section documents the anticipated residual risk after implementation of all recommended remediation actions.
Residual risk is the exposure that remains after controls and mitigations are applied.

Current Risk Posture

Total Findings 32
Critical + High Findings 22
Current Overall Risk CRITICAL

Expected Residual Risk (Post-Remediation)
Expected risk after full remediation MEDIUM

Remaining findings (Low/Info only) 7

Residual Risk Factors (Inherent Limitations)

- Zero-day vulnerabilities not detectable by current testing methods.

- Business logic flaws requiring authenticated/contextual testing beyond scope.
- Supply chain risks in third-party components not fully enumerable.

- Social engineering and insider threat vectors (out of technical VA/PT scope).

- Configuration drift between assessment date and remediation completion.

- Evolving threat landscape may introduce new attack vectors post-assessment.
- Cloud/Saas provider shared-responsibility controls not directly testable.

Recommendation: Schedule a follow-up reassessment within 90 days of completing Critical/High remediations to validate
effectiveness. Annual full-scope VA/PT is recommended as part of continuous security posture management per 1ISO 27001 Clause
10.2 and NIST SP 800-53 CA-2.

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 64

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

A. GLOSSARY OF TERMS & ABBREVIATIONS

Term
ACSC
ASVS
Black-Box
CORS
CSRF
CVE
CVSS
CWE
DAST
DPIA
DPO
ePHI
FedRAMP
FIPS
GDPR
Grey-Box
HIPAA
ISMS

1ISO 27001
LFI/RFI
MFA
NCSC
NIST
OSSTMM
OWASP
POA&M
PTES
RCE
SAST
SHA-256
SLA

SoA

SOC 2
SPA

SQLi

Definition

Australian Cyber Security Centre

Application Security Verification Standard (OWASP)

Testing without prior knowledge of internal systems

Cross-Origin Resource Sharing

Cross-Site Request Forgery

Common Vulnerabilities and Exposures - publicly disclosed security flaws
Common Vulnerability Scoring System (v2.0/v3.1) - standardized severity rating
Common Weakness Enumeration - software security weakness categorization
Dynamic Application Security Testing

Data Protection Impact Assessment (GDPR Art. 35)

Data Protection Officer

Electronic Protected Health Information (HIPAA)

Federal Risk and Authorization Management Program

Federal Information Processing Standards

General Data Protection Regulation (EU 2016/679)

Testing with limited internal knowledge

Health Insurance Portability and Accountability Act (U.S.)

Information Security Management System

International standard for Information Security Management Systems
Local / Remote File Inclusion

Multi-Factor Authentication

National Cyber Security Centre (United Kingdom)

National Institute of Standards and Technology (U.S. Dept. of Commerce)
Open Source Security Testing Methodology Manual

Open Web Application Security Project

Plan of Action and Milestones (NIST/FISMA)

Penetration Testing Execution Standard

Remote Code Execution

Static Application Security Testing

Secure Hash Algorithm 256-bit (evidence integrity)

Service Level Agreement

Statement of Applicability (ISO 27001 Annex A)

Service Organization Control 2 - AICPA Trust Services Criteria

Single Page Application

SQL Injection

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 65

Strictly Confidential - Cyber Advisory LLC

A. GLOSSARY (CONTINUED)

Term
SSP
SSRF
TLP
TLP:RED
TSC
VA/IPT
White-Box
WSTG
XSS

XXE

Definition

System Security Plan

Server-Side Request Forgery

Traffic Light Protocol - information sharing classification
Restricted disclosure - authorized recipients only

Trust Services Criteria (SOC 2)

Vulnerability Assessment and Penetration Test

Testing with full source code / configuration access
Web Security Testing Guide (OWASP)

Cross-Site Scripting

XML External Entity Injection

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Exploit Finder

Page 66

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

B. RISK ACCEPTANCE DECLARATION

Following the review of this VA/PT report, the Client organization acknowledges the identified risks and their potential
business impact. This section formally documents risk treatment decisions.

Risk Summary

Overall Risk Rating CRITICAL
Total Findings 32
Critical / High Findings 1/21
Medium / Low / Info 3/4/3

Risk Treatment Decision Register

. Finding Title - Treatment (Mitigate/Accept/Transfer/Avoid) | Business Justification

PHP 5.6.40 Obsoleto Critical [IMit [JAcc [1Trf [JAvd
2 | SQL Injection - MySQL High [IMit [JAcc [1Trf [JAvd
3 | SQL Injection - MySQL High [IMit [JAcc [1Trf [JAvd
4 SQL Injection - MySQL High [IMit [JAcc [1Trf [JAvd
5 | SQL Injection - MySQL High [IMit [JAcc [1Trf [JAvd
6 Cross Site Scripting (Reflected) High [IMit [JAcc []Trf [JAvd
7 Cross Site Scripting (Reflected) High [IMit [JAcc []Trf [JAvd
8 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
9 Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
10 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
11 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
12 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
13 | Cross Site Scripting (Reflected) High [IMit [JAcc [ITrf [JAvd
14 | Cross Site Scripting (Reflected) High [IMit [JAcc []Trf [JAvd
15 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
16 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
17 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
18 | Cross Site Scripting (Reflected) High [IMit [JAcc [1Trf [JAvd
19 | Path Traversal High [IMit [JAcc [1Trf [JAvd
20 | File Sensibile Esposto (.idea/workspac High [IMit [JAcc []Trf [JAvd
21 | [OpenDB Match] PHP 7.x EOL Critical Ri High [IMit [JAcc [1Trf []JAVd
22 | No HTTPS/SSL Error High [IMit [JAcc []Trf [JAvd
23 | Security Headers Analysis - Grade F Medium [IMit [JAcc [1Trf [JAvd

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 67

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Strictly Confidential - Cyber Advisory LLC Exploit Finder

B. RISK ACCEPTANCE (CONTINUED)

. Flndlng Tite - Business Justification

GDPR Cookie Consent Missing Medium [IMit [JAcc [1Trf [JAvd

25 | [GDPR Art. 37-39] Contatto Privacy/DPO Medium [IMit [JAcc [1Trf [JAvd

Treatment: MITIGATE (implement fix), ACCEPT (retain risk), TRANSFER (insure/outsource), AVOID (discontinue service).

Risk acceptance for Critical/High findings requires executive-level approval and documented business justification per ISO 27001 Clause 6.1.3 and
NIST SP 800-37.

Risk Owner Approval

Name: Title:

Signature: Date:

TLP:RED - STRICTLY CONFIDENTIAL

Cyber Advisory LLC | www.exploitfinder.com Page 68

Strictly Confidential - Cyber Advisory LLC

TLP:RED | FOR AUTHORIZED RECIPIENTS ONLY

Exploit Finder

ATTESTATION & SIGN-OFF

This Vulnerability Assessment and Penetration Test report has been prepared in accordance with industry-standard
methodologies (NIST SP 800-115, OSSTMM 3, OWASP WSTG) and represents the findings observed during the

authorized testing window.

The undersigned parties attest that:

1. Testing was conducted within the authorized scope and rules of engagement.

2. All findings have been verified and documented with supporting evidence.

3. Evidence integrity is maintained via SHA-256 hashing of each finding.

4. Compliance mappings are automated technical observations and do not constitute certification.

5. This document is classified TLP:RED; distribution is restricted to named recipients.

6. The assessment represents a point-in-time snapshot and does not guarantee ongoing security.

Lead Auditor / Assessor
Name: ExploitFinder Engine

Signature:

QA Reviewer
Name: Cyber Advisory Team

Signature:

Client Authorized Representative

Name:

Signature:

Client Technical Contact

Name:

Signature:

Date:

Title:

Date:

Title:

Date:

Title:

Date:

Title:

Document ID: ee71f143-f81d-4d97-a022-d2d07c93bele | Assessment Date: 2026-02-08 00:49:06 | Risk Classification: CRITICAL | Classification:

TLP:RED

This attestation confirms review and acceptance of the assessment methodology, findings, and recommendations. Signing does not imply agreement
with all findings but acknowledges receipt and review of the complete document.

Cyber Advisory LLC | www.exploitfinder.com

TLP:RED - STRICTLY CONFIDENTIAL

Page 69

